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Mathematical descriptions in biology

Mathematical modelling and simulation ways in biology.
qualitative and stochastic descriptions.
structures, dynamics, stability, changes.

Main topics
mathematical dynamics
- qualitative differential equations
- stability, stochastic systems
populations and organisms
- cells, tissues, tumors, evolution
- neuronal systems, cognition
molecular systems
- structures and networks
- chromatin, enzymatic pathways
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Mathematical description

biology in silico
mathematical biology
computational biology
theoretical biology

approaches
stochastic vs. deterministic
symbolic vs. numerical
qualitative vs. quantitative

objects
systems: abstract vs. concrete
structures: static vs. dynamical
time: discrete vs. continuous

Martin Saturka www.Bioplexity.org Bioinformatics - Modelling



Biological abstraction

biologists point of view

description levels
supracellular description
subcellular description

concreteness
specific individuum
multi-unite system

questions for
structural localization
time development
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Development rules

biological non-linearity grounds

codes
strings: replication, translation
rules fixed in evolution

genetic code, histone and suger hypotheses

attractors
non-linear dynamics
’rivers with their basins’

codes for attractor development

states
machine abstraction
development stages

states based regulation modes
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Attractor terrain

attractor basin attractor mutations
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Dynamical systems

study
experiments

bioinformatics explorations
computations

molecular modeling
theory

model development and characterization

phase flows: ~q′(t) = ~N(~q(t), t)
continuous time
differential equations
(non)integrable systems

phase maps: ~qn+1 = ~f (~qn, tn)
discrete time
difference equations
recurrence relations

Martin Saturka www.Bioplexity.org Bioinformatics - Modelling



Dynamics properties

linearity
linear systems

total system as a fixed sum of its subsytems
superposition: el.-mag., quantum systems

non-linear systems
without overall description on independent parts
open systems, approximated descriptions

integrability
integrable systems: with solvable phase flow equations

regular systems
in Hamiltonian physics - with constants of motion
→ simple dynamics

non-integrable systems
usually chaotic systems
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Phase volume

phase spaces - state spaces, variables as dimensions

Hamiltonian systems
having a function H = H(q1, ..., qk , qk+1, ..., q2k )
where for i ∈ 1, ..., k : Ni = ∂H/∂qk+i , Nk+i = −∂H/∂qi

then ∇~N = 0, i.e. zero divergence of ~N
in return we have constant phase volume

Ergodic systems
dynamical systems with constant phase volumes
having the phase space of finite phase (Liouville) volume,
’every’ point of a subset returns back (inifinitely many times)
however the return time grows fast for the particle count
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Orbits - trajectories

autonomous dynamical systems

fixed points
discrete systems: ~q = ~f (~q)

continuous systems: ~N(~q) = 0

periodic orbits
discrete systems: ~q = ~f k (~q)
continuous systems: ~q(t + T ) = ~q(t)

stability
ds: |f ′i (~q)| < 1,

∏k−1
j=0 |f ′i (~q(j))| < 1

cs: real parts of roots of |Lij(~q)− λI| = 0
are lesser than 0, where Lij = ∂Ni(~q)/∂qj
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Logistic map

definition: qn+1 = fa(qn) = a · qn(1− qn)

fixed points
solution: p0 = 0, p1 = 1− 1/a
p1 stability: for a ∈ (1, 3)

f ′
a(q) = [a · q(1− q)]′ = a[(1− q)− q] = a(1− 2q)
f ′
a(p1) = 2− a

periodic (two steps) points
solution: p3,4 = 1/2 · (1 + 1/a± 1/a · (a2 − 2a− 3)0.5)

stability: a ∈ (3, 1 +
√

6)

bifurcation
periodicity of stable periodic point going to ∞ with a → 4
chaos for a = 4, with qn = sin2(2n arcsin(

√
q0))
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Logistic map schemas

qq
0

q
1 2

web diagram bifurcations
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Chaos introduction

systems with ’butterfly effects’ alleged

any viewable butterfly effect would be ’privileged’

chaos properties
sensitive to initial conditions
with topological mixing
with dense periodic orbits

chaos onset
common case: subsequent bifurcations
Feigenbaum constant δ = 4.669201609...

limit of ratios of bifurcation n − th/(n + 1)− th intervals

attractors
fractal dimansionality dim =

log(number of self-similar pieces) / log (magnification factor)
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Topics on chaos

issues in chaos and dynamics

classical chaos
summations on periodic orbits

trajectories in neighborhoods of the (dense) periodic orbits
an analogy to the most probable states of statistical physics

dynamics classes
KAM theorem

invariant tori that ’survive’ weak non-linear perturbations
are those with irrational / non-resonance frequencies

FPU systems
computations on coupled oscillators
excitations on single ones, occasional jumps

famous systems
Brownian dynamics: path of dimension 2 (for Rn, n > 1)
patterns of reaction-diffusion systems
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Periodic orbits

deterministic chaos explorations

system characterization by periodic orbits
periodic orbits are dense for chaotic systems
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Logistic curve

simple population growth

dx/dt = r · x · (1− x/c), with r , c > 0
one-dimensional continuous dynamics
fixed points are 0 (extinction) and c (stable)
more simple dynamics than for the discrete case

general fact: difference equations harder to solve
than differential ones

solution c · ert/(ert + s)
where s = 1− c/x0 for x0 = x(t = 0)

0 c

x
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Graphical description

how to analyze fixed point stability

logistic growth
L11(x = c) = ∂[r · x · (1− x/c)]/∂x |x=c
L11(x = c) = r · (1− 2x/c)|x=c = −r < 0
i.e. it is a stable fixed point
it is mouch easier to see it from the fact that
ẋ > 0 for x < c and ẋ < 0 for x > c

c

x

N(x)
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Differential equations

general properties

situations
one x or two x , y variables depending on themselves
development in time: dx/dt , or dx/dt , dy/dt

dx/dt = f (x , t), with x(t0) = y0
solution existence

f (x , t) is continuous
solution uniqueness

both f (x , t) and ∂f/∂x are continuous

autonomous systems for x and y
dx/dt = f (x , y)
dy/dt = g(x , y)
frequently the case for biological systems
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1-dimensional problems

simple autonomous systems dx/dt = f (x)

f (x) = x ... x ∼ et f (x) = x2 ... x ∼ 1/|t |

f (x) = 1/x ... x ∼
√
|t | f (x) =

√
|x | ... x ∼ t2
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Qualitative description

qualitative differential equations

2-dimensional autonomous systems
dx/dt = f (x , y , t) = f (x , y)
dy/dt = g(x , y , t) = g(x , y)
to plot phase portraits of the systems and to predict
their dynamics

solution methods
1) null-cline analysis

where f (x , y), g(x , y) are zero valued
2) Jacobian analysis

types (stability) of fixed points
a) determinant-trace method
b) graphical Jacobian
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Null-cline method

phase portraits
dx/dt = 3x(1− x)− 1.5xy ... zero - dashed lines
dy/dt = 0.5xy − 0.25y ... zero - solid lines
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Jacobian method

stability of fixed points

computations for a fixed point x̄ , ȳ
detJ = (∂f/∂x · ∂g/∂y − ∂f/∂y · ∂g/∂x)|x̄,ȳ
trJ = (∂f/∂x + ∂g/∂y)|x̄,ȳ
D = (trJ)2 − 4(detJ)

particular cases
detJ < 0 saddle point [the {0, 0} and {1, 0} cases]
detJ > 0, trJ > 0, D ≥ 0 non-stable node
detJ > 0, trJ < 0, D ≥ 0 stable node [the {0.5, 1} case]
detJ > 0, trJ > 0, D < 0 non-stable spiral
detJ > 0, trJ < 0, D < 0 stable spiral
detJ > 0, trJ = 0, center point
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Symbolic dynamics

resigning on numerical valuations at all

fair approximation for some systems

famous symbolic types
cellular automata
L-systems

cellular automaton
discrete system - linear, planar, etc.
state in the next step by a function on cell neighborhood
self-reproducible structures, game of life

Lindenmayer systems
formal grammars, symbols and rewriting rules
used mainly for plant development modeling
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Symbolic examples

L-systems
algae: start A; rules A → AB, B → A
development:
n = 0: A
n = 1: AB
n = 2: ABA
n = 3: ABAAB

Conway’s game of life
infinite planar space of cells
eight neighbors for each cell
rules:
live cell: 0 or 1 alive neighbors → dies
live cell: 4 or more alive neighbors → dies
live cell: 2 or 3 alive neighbors → lives
dead cell: 3 alive neighbors → comes to life
dead cell: otherwise → still dead
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Stochastic dynamics

never is everything (deterministically) known

changes
evolving processes
stationary processes

differential equations
stochasticity inclusion (jumps, lags)
start conditions

noise based order
continuous development into structure-less mediocrity
random jumps into border areas
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Probabilistic systems

random walks
Brownian motion
recurrence probability of 1 for 1D and 2D (discrete) spaces
blocked directions

jump modes
uniform distribution
Lévy jumps
money circulation

epidemic spread
based on Lévy jumps
continuous local spread
accidental further spread
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Granularity

grain sensitivity
Boltzmann vs. Gibbs entropy
natural approximations

a

a

2a

1.4a

a

a
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Cognition

neuronal systems

another complexity stack on the life complexity stack

system structure
ANN primarily a computation model
abstraction gaining system
connected areas accessible to specifications

system development
network connecting and fixation
impulse based concept creation
a will to grasp
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Tissues

biochemistry
signalling cascades
coupled biochemical reactions

differentiation
cellular surfaces
chromatin structures

aberrations
pathological states
tumor development
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Chromatin

the place of gene utilization

states
specific DNA blocks (un)available
histone roles - weak for lower eukaryota
cell remodeling / differentiation

3D structure
DNA folding and accession for gene expression
modifications: DNA methylation, histone acetylation
regulation: signal cascades with phosphorylations
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Evolution

origin of life
RNA proto-world, ribozymes
code and genes sharing

species
speciation: attractor changes
extinction: exponential process

enzyme evolution
enzymes - receptors coevolution
Abzymes, i.e. antibody enzymes
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Items to remember

Nota bene:

abstraction, orbits, stability

dynamics
non-linear systems
qualitative description

systems
symbolic, stochastic
composite, unique
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