Bioinformatics

Mathematical biology

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Bioinformatics - Modelling

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Mathematical descriptions in biology

Mathematical modelling and simulation ways in biology.

- qualitative and stochastic descriptions.
- structures, dynamics, stability, changes.

Main topics

- mathematical dynamics
 - qualitative differential equations
 - stability, stochastic systems
- populations and organisms
 - cells, tissues, tumors, evolution
 - neuronal systems, cognition
- molecular systems
 - structures and networks
 - chromatin, enzymatic pathways

Mathematical description

- biology in silico
 - mathematical biology
 - computational biology
 - theoretical biology
- approaches
 - stochastic vs. deterministic
 - symbolic vs. numerical
 - qualitative vs. quantitative
- objects
 - systems: abstract vs. concrete
 - structures: static vs. dynamical
 - time: discrete vs. continuous

A E > A E >

Biological abstraction

biologists point of view

description levels

- supracellular description
- subcellular description

concreteness

- specific individuum
- multi-unite system
- questions for
 - structural localization
 - time development

Development rules

biological non-linearity grounds

- codes
 - strings: replication, translation
 - rules fixed in evolution
 - genetic code, histone and suger hypotheses

attractors

- non-linear dynamics
- 'rivers with their basins'
 - codes for attractor development
- states
 - machine abstraction
 - development stages
 - states based regulation modes

▲ 프 ▶ 문

Attractor terrain

Bioinformatics - Modelling

æ

프 🖌 🗶 프 🛌

Dynamical systems

- study
 - experiments
 - bioinformatics explorations
 - computations
 - molecular modeling
 - theory
 - model development and characterization
- phase flows: $\vec{q'}(t) = \vec{N}(\vec{q}(t), t)$
 - continuous time
 - differential equations
 - (non)integrable systems
- phase maps: $\vec{q}_{n+1} = \vec{f}(\vec{q}_n, t_n)$
 - discrete time
 - difference equations
 - recurrence relations

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Dynamics properties

- linearity
 - linear systems
 - total system as a fixed sum of its subsytems
 - superposition: el.-mag., quantum systems
 - non-linear systems
 - without overall description on independent parts
 - open systems, approximated descriptions
- integrability
 - integrable systems: with solvable phase flow equations
 - regular systems
 - in Hamiltonian physics with constants of motion
 - \rightarrow simple dynamics
 - non-integrable systems
 - usually chaotic systems

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

phase spaces - state spaces, variables as dimensions

• Hamiltonian systems

- having a function $H = H(q_1, ..., q_k, q_{k+1}, ..., q_{2k})$ where for $i \in 1, ..., k$: $N_i = \partial H / \partial q_{k+i}$, $N_{k+i} = -\partial H / \partial q_i$
- then $\nabla \vec{N} = 0$, i.e. zero divergence of \vec{N} in return we have constant phase volume

Ergodic systems

- dynamical systems with constant phase volumes
- having the phase space of finite phase (Liouville) volume, 'every' point of a subset returns back (inifinitely many times)
- however the return time grows fast for the particle count

ヘロト ヘアト ヘビト ヘビト

Orbits - trajectories

autonomous dynamical systems

- fixed points
 - discrete systems: $\vec{q} = \vec{f}(\vec{q})$
 - continuous systems: $\vec{N}(\vec{q}) = 0$
- periodic orbits
 - discrete systems: $\vec{q} = \vec{f^k}(\vec{q})$
 - continuous systems: $\vec{q}(t + T) = \vec{q}(t)$
- stability
 - ds: $|f_i'(\vec{q})| < 1, \prod_{j=0}^{k-1} |f_i'(\vec{q}(j))| < 1$
 - cs: real parts of roots of |L_{ij}(q̃) − λI| = 0 are lesser than 0, where L_{ij} = ∂N_i(q̃)/∂q_j

Logistic map

• definition: $q_{n+1} = f_a(q_n) = a \cdot q_n(1 - q_n)$

fixed points solution: p₀ = 0, p₁ = 1 - 1/a p₁ stability: for a ∈ (1,3) f'_a(q) = [a ⋅ q(1 - q)]' = a[(1 - q) - q] = a(1 - 2q) f'_a(p₁) = 2 - a

- periodic (two steps) points
 - solution: $p_{3,4} = 1/2 \cdot (1 + 1/a \pm 1/a \cdot (a^2 2a 3)^{0.5})$
 - stability: $a \in (3, 1 + \sqrt{6})$
- bifurcation
 - periodicity of stable periodic point going to ∞ with $a \rightarrow 4$
 - chaos for a = 4, with $q_n = \sin^2(2^n \arcsin(\sqrt{q_0}))$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ → □ → の Q ()

Logistic map schemas

systems with 'butterfly effects' alleged

any viewable butterfly effect would be 'privileged'

- chaos properties
 - sensitive to initial conditions
 - with topological mixing
 - with dense periodic orbits
- chaos onset
 - common case: subsequent bifurcations
 - Feigenbaum constant $\delta = 4.669201609...$
 - limit of ratios of bifurcation n th/(n+1) th intervals
- attractors
 - fractal dimansionality dim =
 - log(number of self-similar pieces) / log (magnification factor)

イロト イポト イヨト イヨト 三日

Topics on chaos

issues in chaos and dynamics

classical chaos

- summations on periodic orbits
 - trajectories in neighborhoods of the (dense) periodic orbits
 - an analogy to the most probable states of statistical physics

o dynamics classes

- KAM theorem
 - invariant tori that 'survive' weak non-linear perturbations are those with irrational / non-resonance frequencies
- FPU systems
 - computations on coupled oscillators
 - excitations on single ones, occasional jumps
- famous systems
 - Brownian dynamics: path of dimension 2 (for R^n , n > 1)
 - patterns of reaction-diffusion systems

・ロト ・ 理 ト ・ ヨ ト ・

Periodic orbits

deterministic chaos explorations

system characterization by periodic orbits

· periodic orbits are dense for chaotic systems

Bioinformatics - Modelling

Logistic curve

simple population growth

•
$$dx/dt = r \cdot x \cdot (1 - x/c)$$
, with $r, c > 0$

- one-dimensional continuous dynamics
- fixed points are 0 (extinction) and c (stable)
- more simple dynamics than for the discrete case
 - general fact: difference equations harder to solve than differential ones
- solution $c \cdot e^{rt}/(e^{rt} + s)$ where $s = 1 - c/x_0$ for $x_0 = x(t = 0)$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Graphical description

how to analyze fixed point stability

general properties

- situations
 - one x or two x, y variables depending on themselves
 - development in time: dx/dt, or dx/dt, dy/dt

•
$$dx/dt = f(x, t)$$
, with $x(t_0) = y_0$

- solution existence
 - f(x, t) is continuous
- solution uniqueness
 - both f(x, t) and $\partial f / \partial x$ are continuous
- autonomous systems for x and y
 - dx/dt = f(x, y)
 - dy/dt = g(x, y)
 - frequently the case for biological systems

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

1-dimensional problems

simple autonomous systems dx/dt = f(x)

Qualitative description

qualitative differential equations

- 2-dimensional autonomous systems
 - dx/dt = f(x, y, t) = f(x, y)
 - dy/dt = g(x, y, t) = g(x, y)
 - to plot phase portraits of the systems and to predict their dynamics
- solution methods
 - 1) null-cline analysis
 - where f(x, y), g(x, y) are zero valued
 - 2) Jacobian analysis
 - types (stability) of fixed points
 - a) determinant-trace method
 - b) graphical Jacobian

イロン 不得 とくほ とくほ とう

Null-cline method

• phase portraits

- dx/dt = 3x(1-x) 1.5xy ... zero dashed lines
- dy/dt = 0.5xy 0.25y ... zero solid lines

stability of fixed points

- computations for a fixed point \bar{x}, \bar{y}
 - $detJ = (\partial f / \partial x \cdot \partial g / \partial y \partial f / \partial y \cdot \partial g / \partial x)|_{\bar{x},\bar{y}}$
 - $trJ = (\partial f/\partial x + \partial g/\partial y)|_{\bar{x},\bar{y}}$
 - $D = (trJ)^2 4(detJ)$
- particular cases
 - det J < 0 saddle point [the {0,0} and {1,0} cases]
 - det J > 0, tr J > 0, $D \ge 0$ non-stable node
 - det J > 0, tr J < 0, $D \ge 0$ stable node [the {0.5, 1} case]
 - det J > 0, tr J > 0, D < 0 non-stable spiral
 - det J > 0, tr J < 0, D < 0 stable spiral
 - det J > 0, tr J = 0, center point

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Symbolic dynamics

resigning on numerical valuations at all

fair approximation for some systems

- famous symbolic types
 - cellular automata
 - L-systems
- cellular automaton
 - discrete system linear, planar, etc.
 - state in the next step by a function on cell neighborhood
 - self-reproducible structures, game of life
- Lindenmayer systems
 - formal grammars, symbols and rewriting rules
 - used mainly for plant development modeling

L-systems

- algae: start A; rules $A \rightarrow AB$, $B \rightarrow A$
- development:

n = 0: A n = 1: AB n = 2: ABA n = 3: ABAAB

- Conway's game of life
 - infinite planar space of cells
 - eight neighbors for each cell
 - rules:

live cell: 0 or 1 alive neighbors \rightarrow dies live cell: 4 or more alive neighbors \rightarrow dies live cell: 2 or 3 alive neighbors \rightarrow lives dead cell: 3 alive neighbors \rightarrow comes to life dead cell: otherwise \rightarrow still dead

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Stochastic dynamics

never is everything (deterministically) known

- changes
 - evolving processes
 - stationary processes
- differential equations
 - stochasticity inclusion (jumps, lags)
 - start conditions
- noise based order
 - continuous development into structure-less mediocrity
 - random jumps into border areas

ヘロト ヘアト ヘビト ヘビト

Probabilistic systems

- random walks
 - Brownian motion recurrence probability of 1 for 1D and 2D (discrete) spaces
 - blocked directions
- jump modes
 - uniform distribution
 - Lévy jumps
 - money circulation
- epidemic spread
 - based on Lévy jumps
 - continuous local spread
 - accidental further spread

Granularity

- grain sensitivity
 - Boltzmann vs. Gibbs entropy
 - natural approximations

프 🕨 🗉 프

Cognition

neuronal systems

another complexity stack on the life complexity stack

- system structure
 - ANN primarily a computation model
 - abstraction gaining system
 - connected areas accessible to specifications
- system development
 - network connecting and fixation
 - impulse based concept creation
 - a will to grasp

Tissues

- biochemistry
 - signalling cascades
 - coupled biochemical reactions
- differentiation
 - cellular surfaces
 - chromatin structures
- aberrations
 - pathological states
 - tumor development

▲ 同 ▶ ▲ 臣 ▶ .

▲ 프 ▶ 문

the place of gene utilization

- states
 - specific DNA blocks (un)available
 - histone roles weak for lower eukaryota
 - cell remodeling / differentiation
- 3D structure
 - DNA folding and accession for gene expression
 - modifications: DNA methylation, histone acetylation
 - regulation: signal cascades with phosphorylations

▲ (目) ▶ (● (目) ▶

Evolution

origin of life

- RNA proto-world, ribozymes
- code and genes sharing

species

- speciation: attractor changes
- extinction: exponential process
- enzyme evolution
 - enzymes receptors coevolution
 - Abzymes, i.e. antibody enzymes

Items to remember

Nota bene:

abstraction, orbits, stability

- o dynamics
 - non-linear systems
 - qualitative description
- systems
 - symbolic, stochastic
 - composite, unique

< 🗇 ▶

A E > A E >

ъ