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Mathematical descriptions in biology

Mathematical modelling and simulation ways in biology.
@ qualitative and stochastic descriptions.
@ structures, dynamics, stability, changes.

@ mathematical dynamics
- qualitative differential equations
- stability, stochastic systems

@ populations and organisms
- cells, tissues, tumors, evolution
- neuronal systems, cognition
@ molecular systems
- structures and networks
- chromatin, enzymatic pathways
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Mathematical description

@ biology in silico
e mathematical biology
e computational biology
e theoretical biology

@ approaches
e stochastic vs. deterministic
e symbolic vs. numerical
e qualitative vs. quantitative

@ objects
e systems: abstract vs. concrete
e structures: static vs. dynamical
e time: discrete vs. continuous
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Biological abstraction

biologists point of view J

@ description levels

e supracellular description
e subcellular description

@ concreteness
e specific individuum
e multi-unite system

@ questions for

o structural localization
e time development
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Development rules

biological non-linearity grounds |

@ codes
e strings: replication, translation
o rules fixed in evolution
@ genetic code, histone and suger hypotheses

@ attractors
@ non-linear dynamics
@ ’rivers with their basins’
@ codes for attractor development

@ states
e machine abstraction
e development stages
@ states based regulation modes
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Attractor terrain

attractor basin attractor mutations
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Dynamical systems

@ study
@ experiments
@ bioinformatics explorations
e computations
@ molecular modeling
e theory
@ model development and characterization

e phase flows: q/(t) = N(G(t), t)
e continuous time
e differential equations
@ (non)integrable systems

@ phase maps: an+1 = f(any tn)
o discrete time
e difference equations
@ recurrence relations
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Dynamics properties

@ linearity
o linear systems

@ total system as a fixed sum of its subsytems
@ superposition: el.-mag., quantum systems

@ non-linear systems

@ without overall description on independent parts
@ open systems, approximated descriptions

@ integrability
e integrable systems: with solvable phase flow equations
@ regular systems
@ in Hamiltonian physics - with constants of motion
— simple dynamics
@ non-integrable systems
@ usually chaotic systems
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Phase volume

phase spaces - state spaces, variables as dimensions J

@ Hamiltonian systems
e having a function H = H(q, ..., Qk, Qk+1, ---, Qok)
whereforie 1,....k: N; = 0H/0qk., Nk+, = —0H/0q;
e then VN =0, i.e. zero divergence of N
in return we have constant phase volume

@ Ergodic systems
e dynamical systems with constant phase volumes
e having the phase space of finite phase (Liouville) volume,
‘every’ point of a subset returns back (inifinitely many times)
e however the return time grows fast for the particle count
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Orbits - trajectories

autonomous dynamical systems |

@ fixed points
o discrete systems: G = f(G)
e continuous systems: N(g) =

@ periodic orbits

o discrete systems: G = %(g)
e continuous systems: g(t + T) = g(t)

@ stability

o ds: |f/(d) < 1. T[S |f/(GU)I < 1
e cs: real parts of roots of [Lj(G) — M| =0

are lesser than 0, where L; = ON;(G)/0q;
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@ definition: gny1 = fa(gn) = @+ gn(1 — gn)

@ fixed points
e solution: pp=0,p1=1-1/a
e p; stability: for a € (1,3)
o f2(q) =[a-q(1 —q)' = al(1 — q) — q] = a(1 — 2q)
o filp)=2-a

@ periodic (two steps) points
e solution: ps4 =1/2-(1+1/at1/a- (a8 —2a— 3)°?)
e stability: a e (3,1+ V6)

@ bifurcation
e periodicity of stable periodic point going to co with a — 4
e chaos for a = 4, with g, = sin?(2" arcsin(y/qo))
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Logistic map schemas

web diagram bifurcations
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Chaos introduction

systems with ’butterfly effects’ alleged |

any viewable butterfly effect would be 'privileged’

@ chaos properties
e sensitive to initial conditions
e with topological mixing
e with dense periodic orbits

@ chaos onset
@ common case: subsequent bifurcations
e Feigenbaum constant § = 4.669201609...
@ limit of ratios of bifurcation n — th/(n+ 1) — thintervals

@ attractors
e fractal dimansionality dim =
@ log(number of self-similar pieces) /log (magnification factor)
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Topics on chaos

issues in chaos and dynamics J

@ classical chaos
e summations on periodic orbits
@ trajectories in neighborhoods of the (dense) periodic orbits
@ an analogy to the most probable states of statistical physics

@ dynamics classes

o KAM theorem

@ invariant tori that 'survive’ weak non-linear perturbations
are those with irrational / non-resonance frequencies

e FPU systems
@ computations on coupled oscillators
@ excitations on single ones, occasional jumps

e famous systems
@ Brownian dynamics: path of dimension 2 (for R", n > 1)
@ patterns of reaction-diffusion systems
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Periodic orbits

deterministic chaos explorations )

@ system characterization by periodic orbits
e periodic orbits are dense for chaotic systems
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simple population growth |

@ dx/dt=r-x-(1—x/c),withr,c>0
e one-dimensional continuous dynamics
e fixed points are 0 (extinction) and c (stable)
e more simple dynamics than for the discrete case
@ general fact: difference equations harder to solve
than differential ones
e solution ¢ - e"/(e" + s)
where s =1 — ¢/xp for xo = x(t = 0)
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Graphical description

how to analyze fixed point stability J

@ logistic growth
o Liy(x=c)=9[r-x-(1—x/C)]/0X|x=¢c
Lis(x=c¢c)=r-(1 —2x/C)|x=c = —r <0
e i.e. itis a stable fixed point
e it is mouch easier to see it from the fact that

x>0forx<cand x <0forx>c
X
\

N(x)
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Differential equations

general properties J

@ situations
@ one x or two x, y variables depending on themselves
e development in time: dx/dt, or dx/dt, dy/dt

@ dx/dt = f(x, t), with x(f) = ¥o
@ solution existence
@ f(x,t)is continuous
@ solution uniqueness
@ both f(x, t) and 9f/dx are continuous

@ autonomous systems for x and y
e dx/dt =f(x,y)
e dy/dt=g(x,y)
e frequently the case for biological systems
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1-dimensional problems

simple autonomous systems dx/dt = f(x) )

— L
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f(x)=x..x~ée f(x)=x% ... x~1/|t|
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Qualitative description

qualitative differential equations J

@ 2-dimensional autonomous systems
o dx/dt=f(x,y, t)=1f(x,y)
° dy/dt = g(vav t) = g(Xv.y)
e to plot phase portraits of the systems and to predict
their dynamics

@ solution methods
e 1) null-cline analysis
@ where f(x,y), g(x, y) are zero valued
e 2) Jacobian analysis

@ types (stability) of fixed points
@ a) determinant-trace method
@ b) graphical Jacobian
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Null-cline method

@ phase

e dx/dt =3x(1—x)—15xy ...

portraits

e dy/dt = 0.5xy — 0.25y

zero - dashed lines

.. zero - solid lines
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Jacobian method

stability of fixed points |

@ computations for a fixed point X, y
o detJ = (0f/0x - 0g/0y — Of /Oy - 0g/0X)|x 5
o trJ = (0f/Ox + 0g/0y)|x.y
o D= (trJ)? — 4(detJ)

@ particular cases

e delJ < 0 saddle point  [the {0,0} and {1,0} cases]
detd > 0, trdJ > 0, D > 0 non-stable node
detJ > 0, trJ < 0, D > 0 stable node [the {0.5,1} case]
detJ > 0, trJ > 0, D < 0 non-stable spiral
detd > 0, trJ < 0, D < 0 stable spiral
detJ > 0, trd = 0, center point
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Symbolic dynamics

resigning on numerical valuations at all |

fair approximation for some systems

@ famous symbolic types
o cellular automata
o L-systems

@ cellular automaton
o discrete system - linear, planar, etc.
e state in the next step by a function on cell neighborhood
o self-reproducible structures, game of life

@ Lindenmayer systems
e formal grammars, symbols and rewriting rules
e used mainly for plant development modeling
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Symbolic examples

@ L-systems
e algae: start A;rules A— AB,B— A
e development:

n=0:A
n=1: AB
n=2: ABA

n = 3: ABAAB

@ Conway’s game of life

e infinite planar space of cells

e eight neighbors for each cell

o rules:
live cell: 0 or 1 alive neighbors — dies
live cell: 4 or more alive neighbors — dies
live cell: 2 or 3 alive neighbors — lives
dead cell: 3 alive neighbors — comes to life
dead cell: otherwise — still dead
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Stochastic dynamics

never is everything (deterministically) known |

@ changes

e evolving processes
o stationary processes

o differential equations
e stochasticity inclusion (jumps, lags)
e start conditions

@ noise based order

e continuous development into structure-less mediocrity
e random jumps into border areas
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Probabilistic systems

@ random walks
@ Brownian motion
recurrence probability of 1 for 1D and 2D (discrete) spaces
@ blocked directions

@ jump modes
e uniform distribution
e Lévy jumps
@ money circulation

@ epidemic spread
e based on Lévy jumps
e continuous local spread
e accidental further spread
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Granularity

@ grain sensitivity
e Boltzmann vs. Gibbs entropy
e natural approximations
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neuronal systems )

another complexity stack on the life complexity stack

@ system structure
@ ANN primarily a computation model
e abstraction gaining system
@ connected areas accessible to specifications

@ system development
e network connecting and fixation
e impulse based concept creation
e a will to grasp
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Tissues

@ biochemistry

e signalling cascades
e coupled biochemical reactions

@ differentiation

o cellular surfaces
e chromatin structures

@ aberrations

e pathological states
e tumor development
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the place of gene utilization |

@ states
o specific DNA blocks (un)available
e histone roles - weak for lower eukaryota
o cell remodeling / differentiation

@ 3D structure
o DNA folding and accession for gene expression
e modifications: DNA methylation, histone acetylation
e regulation: signal cascades with phosphorylations
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@ origin of life
e RNA proto-world, ribozymes
e code and genes sharing

@ species
e speciation: attractor changes
e extinction: exponential process

@ enzyme evolution

@ enzymes - receptors coevolution
o Abzymes, i.e. antibody enzymes
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ltems to remember

Nota bene: J

abstraction, orbits, stability

@ dynamics
@ non-linear systems
e qualitative description

@ systems

e symbolic, stochastic
e composite, unique
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