Bioinformatics

Computational biology

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Computations

ヘロト ヘアト ヘビト ヘビト

3

Branches of computations in biology

Bioinformatics usage in common biology and bioindustry.

- phylogenesis and health care oriented research.
- approach targeting. experiment driven methods.

Main topics

- computational biology
 - evolution, cladistic trees
 - practice, restriction maps
- biomedical informatics
 - pharmaceutical usage
 - medical informatics
- Iaboratory
 - image processing, lims
 - DNA computers, robots

Genetics

classical analysis

Iinkage of traits

- genetic markers
- segregation independence
 - OLS, GLM: variance fraction explained

hereditary diseases

- cca 4000 genetic disorders known
- cystic fibrosis cca 5% in Europe/USA heterozygotes
 - intrigued advantage against cholera toxin, typhoid fever

heredity

- paternal: Y chromosome
- maternal: mitochondria

Cladistics

- o phylogenetic trees
 - tree structure
 - rooted vs. unrooted
 - bifurcating, multifurcating
 - distances
 - dendrograms with distances
 - cladograms without distances
 - taxonomic units
 - OTU operational taxonomic units
 - TU, HTU, clades
- description
 - Newick format
 - ((((A,B),C),(D,E))
 - (((A:1,B:2):3,C:3):7,(D:3,E:1):9)

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

number of different (bifurcating) phylogenetic trees

- n-th leaf: 2n 5 possibilities
- unrooted tree: $(2n-3)!/[2^{n-2} \cdot (n-2)!]$
- rooted tree: $(2n-5)!/[2^{n-3} \cdot (n-3)!]$
- root with the help of an outgroup

伺 とくき とくき とう

æ

Computational phylogenetics

evolution tree algorithms

methods

- distance matrix methods
 - UPGMA unweighted pair group method with arithmetic mean
 - ME minimal evolution
 - NJ neighbor joining
- character state methods
 - MP maximum parsimony
 - ML maximum likelihood
- tree approach
 - phenograms without evolution history (UPGMA)
 - phylograms with evolution history (other methods)

Tree construction - distances

algorithms based on distance evaluations

- UPGMA
 - distance matrix construction (e.g. alignment scores)
 - the nearest pair forms a new TU values on the new TU by the arithmetic mean
 - artificial results for different evolution speeds
- ME
 - to minimalize total branch lengths
 - good idea, however hard to compute
- NJ
 - ME approximation, frequently used
 - start with the star tree (i.e. maximal multifurcation)
 - iterate node joining to minimize total branch lengths

Tree construction - mutations

algorithms based on character mutations

• MP

- trees with minimal total amount of mutations
- branching for separate positions final tree as a consensus on the positions
- artificial results on long/fast evolution
 - long branch attraction long branches with near-root multiple bifurcation

ML

- multiple tree construction
- probability of the sequence set generation by each tree
- taking the tree of the maximal probability
- good idea, however hard to compute
- used in the case of small data sets

Branches

Likelihood computation

•
$$\Pr(L_k|a) = \sum_{b,c} [\Pr(L_i|b) \Pr(a \to b) \cdot \Pr(L_j|c) \Pr(a \to c)]$$

• $\Pr(L_k|x_k) = \sum_a \Pr(L_k|a) \cdot \Pr(a)$

→ < Ξ →</p>

æ

Tree relevance

robustness of the constructed trees

branch probability

- bootstrapping on nucleotide positions
- fraction of trees with a given fork
 - separation of two branches
- good branches with probabilities above 0.9

tree adjustment

- EM expectation maximization
- topology changes like simulated annealing and genetic algorithms

Molecular biology

practical usage

daily laboratory tasks

- restriction sites analysis
 - short palindromic sites serving for fragment gluing
 - databases of restriction sites available
- primers construction
 - vectors usually constructed with specific primer sequences
- partial digest analysis
 - had been used in the past for sequencing
 - branch and bound method take fragments from the largest check whether all the subfragments are present

・ 同 ト ・ ヨ ト ・ ヨ ト

Targeting

- population research (multiple units)
 - epidemiology, virus spreading
 - ecology systems, pest dynamics
 - evolution exploration
- health care (unique organisms)
 - drug development and testing
 - treatment / survival statistics
 - illness diagnosis and prognosis

ethics

- stem cell research, (human) cloning
- experiments on humans/animals/computers
- potential arms usage, abuse
- nature diversity preservation

Targets - sequences

sequences exploration

what to sequence

- genomes, coding sequences
- intra-species, inter-species comparisons disease study
- basic methods
 - fragment assembly, sequence localization
 - databases of sequence variations
- subsequent targets
 - gene prediction comparisons, markers, HMMs
 - gene annotation product structure and function

Targets - genes

genes - ontology

gene structure

- regulatory sequences, promoters
- exons and introns, splicing sites

gene comparison

- evolution: homology, analogy
- populations: SNPs, CNVs
- product localization prediction
- gene function
 - coding genes, RNA genes
 - expression experiments function prediction

Targets - structures

3D structures

function guessing

- domains/folding prediction
 - protein cores, active sites
- homology to other structures
 - sequence patterns
- o drug development
 - protein surfaces
 - ligand targeting, activity modulation
 - protein localization
 - envelope protein search

・ 同 ト ・ ヨ ト ・ ヨ ト ・

microarray experiments

gene expression

- tissue, cell cycle, development experiments
- illness, drug explorations
- data preprocessing, normalization

data exploring

- data visualization
- expression alteration statistics
- illness diagnosis
- gene characterization

・聞き ・ヨト ・ヨト

Targets - relations

expression data

• data learning

- separation into clusters
- illness diagnosis methods
- networks of gene expression
- data understanding
 - relation mining
 - characterization features
 - trend prediction

actual usage in pharmacology

sequence approaches

- SNPs, CNVs for liability to disease prediction
- virus envelope protein search and immunization
- cellular surface protein glycosylation
- expression approaches
 - gene expression alterations on drug usage
 - cancer diagnosis appropriate for binary discrimination
 - patient time-series visualization

・ 同 ト ・ ヨ ト ・ ヨ ト

patient information

- electronic medical records
 - continuation of health care
 - standards: CEN EHRcom, HISA; DICOM, HL7, openEHR
 - organizations: EuroRec.org
- physician support systems
 - best practice guidelines / recommendations
 - decission support / expert systems
 - hospital information systems

Laboratory

LIMS - laboratory information management systems

LIMS

- chemicals, biologicals, experiments
- sample centric, process centric approaches
- data acquisition and processing
- results: storage, access, review
- request and experiment tracking

literature

- Pubmed Medline (pubmed.gov)
- arxiv.org, citebase.org, citeseer.ist.psu.edu, eprints.org
- text mining

laboratory automation

bus / protocols

- parallel: IEEE-488.2 (GPIB), SCPI
- serial: RS-232/422/423/485, USB, CAN
- real-time OS
 - RTAI.org / Xenomai.org
 - comedi.org, scicos.org
- programming
 - kernel modules / user space, mainly in C
 - RTAI-Lab, graphical interface tool-chain

digital signals and images

microscope imaging

- CCD cameras, confocal microscopes
- fluorescent markers GFP, etc.
- 2D images, focal depthfs for 3D images
- medical imaging
 - MRI magnetic resonance imaging
 - PET positron emission tomography
 - EEG, EKG, radiography
- image transformations
 - fourier transform
 - filtering
 - edge detection

Microarray images

microarray data acquisition

image processing

- addressing center locations
- segmentation signal vs. background pixels
 - seeded region growing
- spot data
 - signal intensities, background, quality
- quality problems
 - spot overlap
 - high background
- data files
 - tiff format, without compression
 - grey/RGB for one/two channels

Systems biology

system function and behavior

- description
 - dynamical interactions
 - not only statical classification
 - biomolecular processes
 - enzymatic kinetics
 - biochemical pathways
- methods
 - experiments
 - high-throughput methods
 - biochemistry
 - differential equations
 - biology
 - abstract machines

・ 回 ト ・ ヨ ト ・ ヨ ト

Interactomics

various -omics systems

interactome

- fundamental what interacts with what
- other: genomics, transcriptomics, metabolomics, etc.
- examples
 - GTPase signal transduction
 - MAPK cascade

Ontogenesis models

standard development

cell cycle

- passing through the cell cycle
- checkpoints nutrient limitation, DNA damage
 - checking at specific sections of the cell cycle
- G₀ phase, the non-proliferating phase

differentiation

- subsequent cell 'speciation' final states non-proliferating
 - for higher multicellular organisms
- dedifferentiation experiments

Immunology models

non-standard situations

self-defense

- physilogical vs. pathological states
- understanding complex diseases
- many situations without immediate symptoms
- modelling long-time evolving
- health-care impact
 - cancer treatment
 - tumor evolution
 - virus infection
 - organism failing

DNA computations

usage of DNA complementarity

DNA computers

- hybridization of complementary strands
 - for NP complete problems
 - proof of concept, not a real usage
- usage of enzymes on DNA
 - endonucleases and ligases for Turing Maching construction
 - currently simple non-TM machine constructed
- DNA nanotechnology
 - hybridization usage for complex 3D object construction
 - cubes of DNA molecules structure by complementarity, enzymatic fixation
 - DNA robots
 - combination of DNA with other molecular complexes

Adleman experiment

- Hamiltonian path
 - initial data
 - cities: 20-mer oligonucleotides
 - paths between cities: 10+10 20-mer oligonucleotides
 - processing
 - generate random paths by alignment
 - remove paths with wrong start or end
 - remove paths with not exactly n cities
 - remove paths with missing a city
 - any remaining path is a result
- Iimitations
 - too big amount necessary for large computations
 - accuracy problems for large data sets

・ 回 ト ・ ヨ ト ・ ヨ ト

NA robots

usage of NA complementarity

DNA robots

- mRNA (if present) hybridizes with sequeces on DNA robots
- ssDNA hairpin \leftrightarrow ssDNA released
 - stochastic changes, probabilities according to levels of the expressed mRNAs
- proof of concept experiment
- small RNA molecules
 - current the most developed area
 - not a real nano-technology
 - just a modulator of natural cellular processes

・ 同 ト ・ ヨ ト ・ ヨ ト

Drug and food administration

biotechnology regulation

therapeutics approval

- clinical trials
 - cell cultures / animal / humans
 - four trial phases on humans
- placebo controlled study
- o drug side-effects
- clinicaltrials.gov, www.fda.gov
- genetic modification
 - GMO genetically modified organisms
 - random, targeted alterations
 - composition, resistance
 - interference with ecosystems studies

Items to remember

Nota bene:

images, experiments, robots

- Practice
 - cladistic trees
 - sequence features
- Targets
 - sequences, genes
 - gene expression

ヘロト 人間 ト ヘヨト ヘヨト

3