Bioinformatics

Profiles data mining

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Intriguing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Intriguing on profiles

Data mining technics for relation exploration on profiles.

- associations, multitudinal quantifiers, dinorms.
- bootstrapping, permutation tests. entropy.

Main topics

- mining technics
 - data and knowledge
 - important information
- observational calculi
 - fuzzy logic, quantifiers
 - aggregation functors
- multivariate statistics
 - resampling methods
 - inference, decisions

< ≣ >

Relation types

Solid state

Fluid state

Gas state

search for the 'organismal' relations:

A form

C form

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へ()>

Data mining targets

- general features
 - great fraction of objects contains the property
 - common properties, object comprehension
 - frequent higher / lower expressions of some genes
- unusual events
 - rarely occuring 'alarm-trigger' situations
 - regular checking, after comprehension is done
 - not to allow cellular behavior to go out of frames
- specific features
 - fraction difference between object groups
 - partial object class characterization
 - tracking expression of many genes → moderate between-group expression differences acceptable

(4回) (日) (日)

Knowledge expression

formulation of knowledge about explored systems

statements, recommendations

- what something either is or is supposed to be
- probabilities, beliefs, degrees of truth
 - various typs of uncertainty expression
- data tables, databases, protocols
 - actual data / information / knowledge storage

hypothesis creation and testing

unkown relations

- when we do not know what to expect from the data
- search for every important feature and property
- hypothesis creation processed by data-mining technics

supposed relations

- when we have an alleged factual hypothesis
- estimation of particular statement plausibility
- hypothesis testing processed by statistics technics

Fourfold tables

event table rationality

- counts of event cases: a, b, c, d
- associations between (φ, ψ) data features φ, ψ for e.g. particular gene expressions
- non-informational data: usually c, d
 - the case of 'nothing happens' situations
 - expressions of 'for many φ having many ψ'

크 > 크

Formulae

logic basics

predicate and observational calculi

- formulae $\varphi(x)$, $\psi(x)$, $\varphi(x) \land \psi(x)$, $Q(\varphi, \psi)$
- quantifiers $Q(\varphi, \psi)$
 - φ antecedent, ψ succedent consequent
- variables: x for particular experiments, tissues
 - supposed implicitely if not written
- expression of important pieces of information
 - directional associations 'for many φ having many ψ '
 - mutual associations 'few situations of single φ or ψ '

Crisp and fuzzy data

various meanings of fuzziness

usually when something is not defined as binary 0/1 values

- mathematical logic
 - precise mathematical meaning of fuzziness
 - formula evaluations in the whole [0, 1] interval
 - specific axioms for particular fuzzy logics
- connectives, t-norms
 - and connective defined by (continuous) t-norms,
 i.e. t(x, y) mappings [0, 1] × [0, 1] → [0, 1] that are commutative, associative, non-decreasing, t(1, y) = y
 - implications residual: *i*(*x*, *y*) = *z* mappings for max{*z* | *t*(*x*, *z*) ≤ *y*}

イロン 不得 とくほ とくほ とう

Fuzzy events

event squares as the fuzzy-data analogy of fourfold tables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multitudinality

implication-like quantification reduced on important data

more vs. less important events

- the succedent under the antecedent condition
- not ot be overwhelmed by nothing-happens data
 - feature pairs where is valid: if the antecedent is satisfied than succedent is usually satisfied too
 - if the antecedent is not satisfied than we do not care
- crisp data-case multitudinality
 - quantifiers are defined with the help of fourfold table values *a*, *b*, *c*, *d* (*a* is the count of event where both antecedent and succedent are satisfied, *b* is for just the antecedent satisfied, etc.)
 - if Q is satisfied on (a₁, b₁, c₁, d₁) data and we have a₁ ≤ a₂, b₁ ≥ b₂ for another data (a₂, b₂, c₂, d₂) than Q is satisifed on the 2-indexed data as well.

ヘロト 人間 ト くほ ト くほ トー

directional multitudinal quantifiers Q on fuzzy data

- the events are not 'yes'/'no' situations
 - generalizing the definition for 'something partially happens' event cases
- Q definition with the help of event squares
 - $\{x, y_1\} \rightarrow \{x, y_2\}$ for $y_1 \leq y_2$ does not decrese Q value
 - addition / removal of $\{0, y\}$ events does not change Q value
 - {1,1} is the best event for the *Q* valuation
 - {1,0} is the worst event for the *Q* valuation

ヘロン 人間 とくほ とくほ とう

Quantifiers

multitudinal quantifiers based on residual implications

- product t-norm: $t(x, y) = x \cdot y$, i(x, y) = 1 for $y \ge x$, or y/x
- Lukasiewicz t-norm: t(x, y) = max(0, x + y 1), i(x, y) = 1 for $y \ge x$, or 1 + y x
- Goedel t-norm: t(x, y) = min(x, y), i(x, y) = 1 for $y \ge x$, or y
- particular multitudinal quantifiers
 - weighted implication means
 - the product t-norm case $\sum \min\{x, y\} / \sum x$
 - weighted implication quantiles
 - each event has its length according to the x value
 - quantile estimations
 - analogically to the standard quantile estimation
 - survival models
 - modified version of the Kaplan-Meier estimator

Bioinformatics - Intriguing

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Examples

survival based quantification

В

< 🗇

▲ 臣 ▶ ▲ 臣 ▶ …

æ

Symmetric notions

mutual multitudinal quantifiers

- up to know, we had directional quantifiers (i.e. relations)
- directionality to bidirectionality switch by taking both directions into account
- taking the lesser values during weighted implication computations for {x, y} and {y, x} events
- o distances
 - symmetric multitudinality can be used as a feature to feature (e.g. inter-genes) similarity measure
 - the product t-norm case: $\sum min\{x, y\} / \sum max\{x, y\}$

ヘロン 人間 とくほ とくほ とう

relations available - use them

- too many gene formulas (genes, gene tuples)
 - cluster the gene formulas into groups of similar expressions
 - mutual multitudinal quantifiers available as a similarity measure
- directional clustering
 - classical centered clustering the items as both greater and lesser than respective centers
 - uni-directionality centering one set of lesser and one set of greater items per cluster

Gene selection

which gene combinations are substantial for tissue distinction

- (formula based) class covering
 - selection of gene formulas which are highly valuated at an object class
 - go through subsequently longer formulas φ₁, φ₁ ∧ φ₂, φ₁ ∧ φ₂ ∧ φ₃, ... while a class has a high valuation and no other class has a lower valuation
 - set of many such reached formulas forms a pool of distinction gene expression properties
- gene shaving (based on PCA)
 - 'shaving off' genes with low dot product to an eigenvector
 - the rest genes used for PCA recomputation iteration
 - the right group size by the gap statistics
 - the most variance explained compared to random groups

・ロト ・ 理 ト ・ ヨ ト ・

Feature aggregation

putting many features into single property

aggregators

- trend prediction from many symptoms
- demands: continuity, stability, associativity
- one way trand by e.g. logical connectives

directions

- single or two opposite proneness directions
- usually some combination of antagonistic trends
- stable continuity with associativity impossible

gene regulation description

value separation

- both gene activation and inhibition are important events
- making statement pairs out of single gene expression statements
 - old: gene, expression
 - new: gene, activation, gene, inhibition
- description formulas
 - addition of the 'opposite' connective to the language
 - example: $g_1 \wedge g_2 \wedge \text{opp} g_3$
 - i.e. both genes 1 and 2 are activated and gene 3 is inhibited

ヘロン 人間 とくほ とくほ とう

Dinorms

alike trends first, then overall combination

trend aggregation

- aggregations made separately for the opposite directions
- finally, combination of the overall anti-directional trands
- stability, continuity and a kind of associativity gained

symbolic notation

- $(A_{upp} \leftarrow A_{low}) \lor (A_{low} \leftarrow A_{upp})$
- the overall combination by coimplications
 - kind of difference measurement
 - one of the two items is zero, the other one is the overall trend

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Dinorm structure

Rule (strength) values

schematic spring example of a general dinorm

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Resampling methods

amounts of data features and relations

- based on empirical sampling distribution
 - make an assumption of samples interchangebility
- resampling technics
 - bootstrapping
 - trend evaluation under multiple symptoms
 - leading into a real valued parameter estimation
 - permutation tests
 - p-value estimation under unknown data distribution
 - difference between two groups estimation
 - gap statistics
 - (cluster) size choice from a sequence of ranks
 - point of the largest group-plausibility

・ 同・ ・ ヨ・

Resampling algorithms

bootstrap method

- take all the data samples as an unordered set
- make a new sampling with replacements of the original data size
- compute the explored property as usually, save the value
- make the new sampling / computation many times
- the new distribution is the one of the property, it tends to be the normal distribution
- permutation tests
 - take all the data samples as an unordered set
 - separate the data by accident into right-sized groups
 - compute the explored difference, save the value
 - make the new sampling / computation for many times
 - the new distribution is the one of the test
 - p-value as the ratio of larger gained differences

・ 同 ト ・ ヨ ト ・ ヨ ト

Multiple decisions

- parallel subdecisions
 - nearest neighbors
- sequential subdecisions
 - classification trees
- after data mining is done
 - new features gained for decision making
 - nearest neighbor search should be improved
 - features available for multiple decisioning
- missing data
 - some experimental data missing in virtually every dataset
 - lost subdecisions either ignored or modelled by the most similar samples

・ 同 ト ・ ヨ ト ・ ヨ ト …

questions \rightarrow answers \rightarrow classification

C&RT

- classification and regression trees
- tree: each (non-leaf) node is an if-then-else condition
- subsequent questions / answers to make classification
- leaf nodes are the classes (diagnoses)
- algorithm
 - build tree
 - subsequent best-separation splitting
 - tree pruning
 - to avoid overfit done by too specific tree learning

ヘロン 人間 とくほ とくほ とう

random forests approaches

- voting for multiple classifications
 - each tree has a vote to make a classification
 - outputs of many trees → averaged results
 - could be used as a self-contained data-mining technics
- bagging bootstrap based aggregating
 - training data being taken by bootstrapping
 - constructing multiple classification trees
 - final result as an averaging consensus

Entropy

probabilistic structure characterization

- Fisher information
 - suitability of an experimental / statistical schema
 - depends on distance measures, keeping track of locality
- Shannon entropy
 - global measure of overall stochasticity
 - length of the most parsimonious alphabet

프 🕨 🗉 프

Splitting

suitable data separations

subsequent separations

- classification trees
- ILP programming
- clustering trees
- tree structure
 - to make the classification tree resembling the entropy tree
 - not to construct trees too deep
 - many questions \rightarrow many errors

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

relational data-mining on multiple tables

inductive logic programming

- data and classes given by positive and negative examples
- data classes characterization by logic program (hypothesis)
- for (deterministic) data with limited amount of attributes

ILP technics

- to construct hypothesis for
 - the positive examples being proved by it
 - the negative examples not being proved by it
- separation tree construction
- prooving by traversal the tree

ヘロト ヘアト ヘビト ヘビト

Learning

learning validation

- over/under-fitting
 - stop the learning process when the classification success growth changes to be slow / shallow
- cross-testing
 - to test the learned classification method on independent data
 - split initial data into two groups: for learning and for testing
 - enough data 1/3 for testing, otherwise 1/10 for testing
- Occam's razor
 - statistical character of the principle
 - do not use more parameters than necessary

ヘロン 人間 とくほ とくほ とう

1

Kolmogorov complexity

the absolutely shortest description

theoretical notion with nice pseudoparadoxes

• data compression

- entropy encoding the first step (for particular symbols)
- standard compression technics possible if nothing better
- nearly everything contains some regularities

MDL

- minimal description length approach
- whether to use plain sequence or a found regularity
- if description of the regularity together with the reduced sequence longer than the old sequence, do not use the weak regularity

くロト (過) (目) (日)

Items to remember

Nota bene:

fuzzy logic, crisp and fuzzy data

- Data mining
 - event tables, squares
 - multitudinal quantifiers
- Feature combination
 - aggregators, resampling
 - decisions, entropy

프 🕨 🗉 프