Bioinformatics

Clusters and networks

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Learning

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Learning on profiles

Supervised and unsupervised methods on expression data.

- approximation, clustering, classification, inference.
- crisp and fuzzy relation models. graphical models.

Main topics

- vector approaches
 - SVM, ANN, kernels
 - classification
- data organization
 - clustering technics
 - map generation
- regulatory systems
 - Bayesian networks
 - algebraic description

< ∃ >

Inference types

- reasoning
 - logical
 - standard logical rules based reasoning
 - statistical
 - frequent co-occurence based reasoning
- deduction (logic, recursion)
 - $A, A \rightarrow B \vdash B$
- induction (frequentist statistics)
 - many $A, B \vdash A \sim B$
 - few $A, \neg B \vdash A \rightarrow B$
- abduction (Bayesian statistics)

•
$$A_1 \rightarrow B, ..., A_n \rightarrow B, B \vdash A_i$$

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Machine learning methods

• supervised learning methods

with known correct outputs on training data

- approximation
 - measured data to (continuous) output function growth rate → nutrition supply regulation
- classification
 - measured data to discrete output function expression profiles → illness diagnosis
- regression
 - continuous measured data (cor)relations a gene expression magnitude → growth rate
- unsupervised learning methods without known desired outputs on used data
 - data granulation
 - internal data organization and distribution
 - data visualization
 - overall outer view onto the internal data

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

MLE

- maximal likelihood estimation
 - $L(y | X) = \Pr(X | Y = y)$
 - conditional probability as a function of the unkown condition with known outcome, a reverse view on probability
- Bernoulli trials example

$$L(\theta \mid H = 11, T = 10) \equiv \Pr(H = 11, T = 10 \mid p = \theta) = \binom{21}{11} \theta^{11} (1 - \theta)^{10}$$

$$0 = \partial/\partial\theta \ L(\theta \mid H, T) = \binom{21}{11} \theta^{10} (1 - \theta)^9 (11 - 21\theta) \to \theta = 11/21$$

- used when without a better model
 - maximizations inside dynamic programming technics $\sqrt{}$
 - $\bullet\,$ variance estimation leads to biased sample variance $\times\,$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Regression

Iinear regression

- least squares
 - for homoskedastic distributions
 - sample mean the best estimation
- least absolute deviations
 - robust version
 - sample median a safe estimation

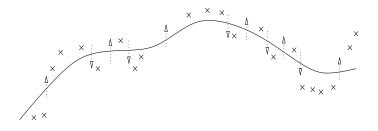
$$\begin{array}{c|c} \min_{\bar{x}\in R} \left(\sum_{i} |x_{i} - \bar{x}|^{2}\right) & \min_{\bar{x}\in R} \left(\sum_{i} |x_{i} - \bar{x}|\right) \\ & \downarrow \\ \left(\sum_{i} |x_{i} - \bar{x}|^{2}\right)' = 0 & \qquad (\sum_{i} |x_{i} - \bar{x}|)' = 0 \\ & \rightarrow \text{ median} \\ & \bar{x} = \sum_{i} x_{i}/n & \qquad \#x_{i} : x_{i} < \bar{x} = \#x_{i} : x_{i} > \bar{x} \end{array}$$

Bioinformatics - Learning

ヘロン ヘアン ヘビン ヘビン

3

Parametrization



- parametrized curve crossing
 - assumption: equal amounts of above / below points
 - the same probabilities to cross / not to cross the curve
 - cross count distribution approaches normal distribution
 - over/under-fitting if not in $(N-1)/2 \pm \sqrt{(N-1)/2}$

Distinctions

empirical risk minimization for discrimination

metamethodology

- boosting
 - increasing weights of wrong result training cases
- probably approximately correct learning
 - to achieve high probabilities to make convenient predictions

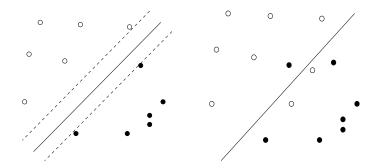
particular methods

- support vector machines
- artificial neural networks
- case-based reasoning
- nearest neighbour algorithm
- (naive) bayes classifier
- decision trees
- random forests

ヘロト ヘアト ヘビト ヘビト

SVM

Support vector machines



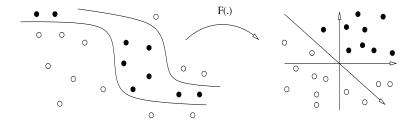
Iinear classifier

- maximal margin linear separation
- minimal distances for misclassified

프 🕨 🗉 프

Kernel methods

non-linear into linear separations in higher dimensional space



- linear discriminant given by dot product $\langle F(x_i), F(x_i) \rangle$
- back into low-dimensional space by a kernel $K(x_i, x_j)$

VC dimension

Vapnik-Chervonenkis dimension

classification error estimation

- more power a method has more prone it is to overfitting
- misclassifications for a binary f(α) classificator
- iid samples drawn from an unknown distribution
 - R(α) probability of misclassification in real usage
 - *R^{emp}(α)* fraction of misclasified cases of a training set
- then with probability 1η , training set of size N

$$R(\alpha) < R^{emp}(\alpha) + \sqrt{rac{h(1+ln(2N/h)) - ln(\eta/4)}{N}}$$

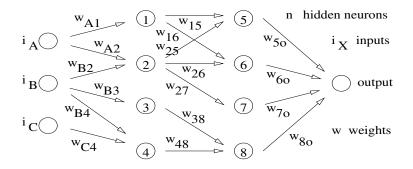
- *h* the VC dimension
 - size of maximal sets that f(α) can shatter
 - 3 for a line classifier in a 2D space

ヘロト ヘアト ヘヨト

三) (

ANN

artificial neural networks



neuron activation function

- $f_2(e) = f_2(i_A w_{A2} + i_B w_{B2} c_2)$
- f_i is non-linear, usually sigmoid, with c_i given constants

프 🕨 🗉 프

ANN learning

error backpropagation

- iterative weight adjusting
 - compute errors for each training case
 - $\delta = \text{desired} \text{computed}$
 - propagate the δ backward: $\delta_5 = \delta \cdot w_{5o}$ $\delta_1 = \delta_5 \cdot w_{15} + \delta_6 \cdot w_{16}$, ...
- adjust weights to new values

•
$$w_{A1}^{new} = w_{A1} + \eta \cdot \delta_1 \cdot df_1(e)/de \cdot i_A$$

•
$$w_{15}^{new} = w_{15} + \eta \cdot \delta_5 \cdot df_5(e)/de \cdot f_1(e)$$

- ...
- kind of gradient descent method
 - other (sigmoid function) parameters can be adjusted as well
 - converges to a local minimum of errors

ヘロン ヘアン ヘビン ヘビン

SOM

self-organizing maps

- kind of an unsupervised version of ANNs
 - the map is commonly a 2D array
 - array nodes exhibit a simple property
 - each input connected to each output
 - used to visualize multidimensional data
 - similar parts should behave similarly
- competitive learning of the network
 - nodes compete to represent particular data objects
 - each node of the array has its vector of weights
 - initially either random or two principal components
 - iterative node weights / property adjusting
 - take a random data object
 - find its best matching node according to nodes' weights
 - adjust node weights / property to be more similar to the data
 - adjust somewhat other neighboring nodes too

< 🗇 > <

프 아 이 프 아

3

GTM

generative topographic map

GTM characteristics

- non-linear latent variable model
- probabilistic counterpart to the SOM model
- a generative model
 - actual data are being modeled as created by mappings from a low-dimensional space into the actual high-dimensional space
 - data visualization is gained according to Bayes' theorem
 - the latent-to-data space mappings are Gaussian distributions
 - created densities are iteratively fitted to approximate real data distribution
 - known Gaussian mixtures and radial basis functions algorithms

ヘロン 人間 とくほ とくほ とう

э

Nearest neighbor

- case-based reasoning classification
 - diagnosis set to the most similar determined case
 - how to measure distances between particular cases?
- *k*-NN
 - take the k most similar cases, each of them has a vote
 - simple but frequently works for (binary) classification
- common problems
 - which properties are significant, which are just noise
 - suitable sizes of similar cases, how to avoid outliers

Relations

the right descriptive features - the right similar cases

- search for important gene expressions and patient cases
- unsupervised methods
 - data clustering
 - for the similar data cases
 - data mining
 - for the important features
- supervised methods
 - Bayesian network inference
 - informatics and statistics
 - minimum message length
 - informatics and algebra
 - inductive logic programming
 - informatics and logic

< ∃ > _

graph approach to clustering

- transform given data table to a graph vertices for genes edges for gene pairs with similarity above a threshold
- to find the least graph alteration to result in a clique graph
- CAST algorithm
 - iterative heuristic clique generation
 - a clique construction from available vertices
 - initiate with a vertex of maximal degree
 - while a distant vertex taken or close vertex free add the closest vertex into the clique remove the farthest vertex from the clique

ヘロト 人間 ト ヘヨト ヘヨト

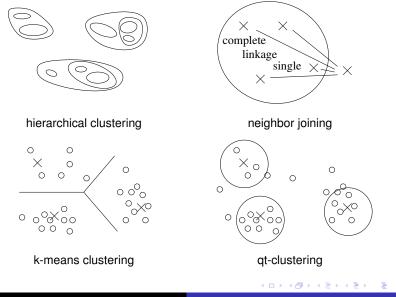
standard clustering technics

to make separated homogenous groups

- center based methods
 - k-means as the standard
 - c-means, qt-clustering
- hierarchy methods
 - agglomerative bottom-up
 - divisive top-down
- combinations
 - two-steps approach

(A) E > (A) E > (B)

Cluster structures



Martin Saturka www.Bioplexity.org

Bioinformatics - Learning

how to measure object-object (dis)similarity

Euclidean distance Manhattan distance Power distance maximum distance Pearson's correlation percentage disagreement $\frac{[\sum_{i} (x_{i} - y_{1})^{2}]^{1/2}}{\sum_{i} |x_{i} - y_{1}|} \\ \frac{[\sum_{i} (x_{i} - y_{1})^{p}]^{1/p}}{\max_{i} \{|x_{i} - y_{i}|\}} \\ \text{det product for port$

dot product for normalized data fraction of $x_i \neq y_i$

- metric significance
 - different powers usually do not significantly alter results
 - more different distance measuring should change cluster compositions

ヘロト ヘアト ヘビト ヘビト

neighbor joining - common agglomerative method

hierarchical tree creation

- joining the most similar clusters
 - single linkage nearest neighbor
 - distances according to the most similar cluster objects
 - complete linkage furthest neighbor
 - distances according to the most distant cluster objects
 - average linkage
 - cluster distances as mean distances of respective elements
 - Wards method information loss minimization
 - takes minimal variance increase for possible cluster pairs

ヘロン 人間 とくほ とくほ とう

The k-means

the most frequently used kind of clustering

• k-mean clustering algorithm

- start: choose initial k centers
- iterate for objects (e.g. genes) being clustered: compute new distances to centers, choose the nearest one
- for each cluster compute new center
- end when no cluster changes
- to put less weight on similar microarrays

pros

usually fast, does not compute all object-object distances

cons

amount and initial positions of centers highly affect results

Bioinformatics - Learning

ヘロン 人間 とくほ とくほ とう

Center count

- do not add more clusters when it does not increase gained information sufficiently
- center selection
 - random
 - make k-means clustering several times
 - PCA
 - principal components lie in data clouds
 - data objects
 - choose distant objects, with weights
 - two steps
 - take larger amount of clusters, then do hierarchical clustering on the result centers

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Cluster fit

how convenient are the gained clusters

k-mean clustering

- intra-cluster vs. out-of-cluster distances for objects
- ratios of inter-cluster to intra-cluster distances
 - the Dunn's index
 - inter / intra variances
- hierarchical clustering
 - variances of each cluster
 - similarity for cluster means
 - bootstrapping for objects with suitable inner structures

・ロト ・ 一 ト ・ ヨ ト

Alternative clustering

- qt (quality threshold) clustering
 - choose maximal cluster diameter instead of center count
 - try to make maximal cluster around each data objects take the one with the greatest amount of objects inside
 - call it recursively on the rest of the data
 - more computation intensive more plausible than k-means
 - can be done alike for maximal cluster sizes
- soft c-means
 - each object (gene) is in more clusters (gene families)
 - object belonging degrees, sums equal to one
 - similar to k-means, stop when small cluster changes
 - suitable for lower amounts of clusters
- spectral clustering
 - object segmentation according to similarity Laplacian matrix eigenvector of the second smallest eigenvalue

▶ ▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Dependency description

used for characterization, classification and compression

BN

- Bayesian networks
- what depends on what, which variables are independent
- then fast, suitable inference computing

MML

- minimal mesage length
- shortest form of an object / feature description
- real amount of information an object contains

ILP

- inductive logic programming
- to prove most of the positive / least of the negative cases
- accurate given objects vs. background characterization

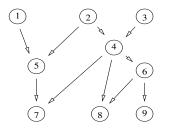
ロトス得とくほとくほと

Graphical models

- joint distributions
 - $\Pr(x_1, x_2, x_3) = \Pr(x_1 \mid x_2, x_3) \cdot \Pr(x_2 \mid x_3) \cdot \Pr(x_3)$
 - intractable for slightly larger amounts of variables
 - used to compute important probabilities themselves
 - used for conditional probabilities
 - \rightarrow for Bayesian inference
- conditional independence
 - A and B independent under C: A L B C
 - $A \perp B \mid C$: $Pr(A, B \mid C) = Pr(A \mid C) \cdot Pr(B \mid C)$
 - after a few rearrengements: Pr(A | B, C) = Pr(A | C)
 - Markov processes are just one example of conditional independence
- graphs and relations
 - simplifying the structure with stating just some valid dependencies, no edges → (conditional) independence
 - edges stating the only dependencies

ロトス部トメヨトメヨトニヨ

Bayesian systems



DAG of dependencies

 x_5 depends on $x_1 x_2$

- $Pr(x_5 | x_1, x_2, x_3, x_4) = Pr(x_5 | x_1, x_2)$
- any node is given all its parents (conditionally) independent with all the nodes which are not its descendants (e.g. x₃, x₅ independent at all)

同 とくほ とくほ とう

Bayesian network

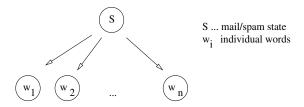
- inference
 - inference along the DAG is computed acoording to the decomposition of conditional probabilities
 - inference along the opposite directions is computed acoording to the Bayesian approach

Pr(A, B, C) = Pr(A|B, C) · Pr(B|C) · Pr(C)
how to compute Pr(A = True|C = True)

$$\Pr(A = True | C = True) = \Pr(C = True, A = True) / \Pr(C = True)$$
$$= \sum_{B} \Pr(C = True, B, A = True) / \sum_{A,B} \Pr(C = True, B, A)$$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

Naive Bayes



- assumption of independent outcomes
 - used e.g. for spam classification
 - $S = argmax_s \Pr(S = s) \prod_j \Pr(O_j = w_j | S = s)$
 - possible to compute fast online with 10⁴ items

< 🗇 🕨

→ E > < E >

Items to remember

Nota bene:

classification methods

- learning technics
 - vectors, kernels, SVM, ANN
 - conditional independence
- clustering methods
 - hierarchical clustering
 - k-means, qt-clustering