Bioinformatics

Expressome and proteome

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Microarrays

イロン 不得 とくほ とくほ とう

3

Microarray experiments

Gene expression microarrays. Protein chips. Basic algorithms.

- Experimental layouts, expression chip technics.
- Data extraction and visualization, linear methods.

Main topics

- DNA chips
 - expression, SNP, CGH microarrays
 - data normalization
- new chip technics
 - immunoglobulin microarrays
 - cell microarrays
- Data visualization
 - PCA, SVD, factor analysis
 - multidimensional scaling

Tissues

differences in gene expression and protein pathways

homeostasis - cellular differentiation

- gene expression
 - transcription regulation: inhibition, activation
 - mRNA processing
- protein pathways
 - localization, modification, degradation
- cell signaling
 - receptors: membrane, intracellular
 - quorum sensing

< /₽> < ∃>

Expression regulation detection

levels of gene expression, protein concentrations

mRNA expression

- expression microarrays
- chromatin immunoprecipitation

protein content

- protein chips
- chromatography
- 2D-electrophoresis
- mass spectrometry

Expression microarrays

standard chip layouts

- a plate with an amount ($\approx 10^4$) of spots
- each spot with a probe oligonucleotides
- hybridization with colored target cDNA
- fluorescence detection
- two channel chip two target mixture
 - green spots: control DNA, red spots: sample DNA
 - yellow / black spots: both / neither targets
- one channel chip one sample solution
 - usually more spots for a single target with exact and one-mismatch probe DNA oligos

usually: targets are the sequences of investigated tissues

tissue separation

- appropriate specific technics
- mRNA extraction
 - polyA tail based isolation
- cDNA polymerization
 - mRNA to cDNA reverse transcription
 - nucleotides with color markers
 - laser excitation for detection

Probe characteristics

probe / support oligos the ones attached prior to the chips

necessary high target hybridization but low cross-hybridization

- possible oligos for a two-channel chip
 - probe length 50 \pm 4 bases
 - length of 25 bases for a one-channel chip
 - GC content 40% to 60%
 - secondary structure avoiding
 - without 4 subsequent G bases (or four C bases)
 - without palindromic sequences longer than 7 bases
 - without splicing site sequences
 - melting point 52.4 °C ± 4.0 °C
 - homology to other targets
 - up to 75% to any other gene
 - up to 14 bases continuous match

Alternative approaches

microarrays are under continuous development

- standard approaches
 - solid chips
 - pre-synthesized or in-situ (short) probes
 - close high-intensity spots problems
 - photobleaching problems
- fluid arrays
 - beads with multiple copies of target DNA
 - fluorescence based separation
 - retention of over/under-expressed sequences
- quantum dots
 - microspheres with target DNA and specific QD
 - deposition on multiple fibred plates
 - detection of specific (bar-code) signals

Other DNA microarrays

variations in chromosomal DNA composition

SNP microarrays

- parallel mutation detection
- for genetic diseases detection
- polymorphism characterization

CGH microarrays

- comparative genomic hybridization
- with large probes on microarrays
- gene copy changes, genomic gains / loses

- mass-charge ratio measurement
 - protein (set) separation
 - protein backbone breaking
 - fragment ions acceleration
 - tandem method
 - (large) fragments and their subfragments
- signal data processing
 - comparison to database data
 - spectral alignment
 - 0-1 sequences of peaks
 - comparison of such two sequences
 - dynamic programming alignment
 - protein reconstruction
 - graph: nodes masses, edges mass loses
 - best path (least noise) through the graph
- usage
 - protein modification detection
 - protein content identification
 - (poor) protein sequencing

ロト (得) (目) (日)

ъ

Protein chips

- protein activity measurement
 - spots with attached proteins
 - substrate deposition
 - reaction product measurement
- protein interactions
 - spots with attached proteins
 - deposition of molecules of interest
 - detection of bound molecules
- antibody microarrays
 - immunoglobulin-recognition based methods
 - spots with antibodies
 - deposition of antigens
 - deposition of (biotinylated) detection antibodies
 - deposition of respective labeled molecules

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cell arrays

- cells grown on glass substrate
 - possibility to take up lipid-NA complexes
 - influation of nucleic acid part of the complexes
- Ipid-DNA complexes
 - transfection in-situ
 - ectopic expression analysis
- lipid-RNA complexes
 - RNA interference microarrays
 - loss-of-function (reverse genetics) chips
 - dsRNA / shRNA based silencing
- tissue microarrays
 - array of tissue cores for a histological analysis

Other analysis methods

various high-throughput methods emerging

carbohydrate detection

- protein glycosylation characterization
- antibodies against specific carbohydrates
- cellular surface characterization
- for developmental biology, immunology, etc.
- SPR biosensors
 - surface plasmon resonance
 - thin film of a metal (gold) as the surface
 - light coming under internal reflection conditions
 - photons interact with free electrons of the layer
 - mass concentration influences the resonance
 - one interactant attached to the sensor surface
 - molecular interaction measurement

Experimental data

many experiments - a lot of data

- interval data
 - usually lognormal-like distribution
 - first, make ratios against reference values with subsequent making logarithms of the values
 - frequent multiple checks
 - p-value corrections necessary
- data modifications
 - data corrections
 - other gene signals interference
 - to subtract signal caused by other genes
 - data normalization
 - to standardize data across experiments
 - experimental conditions affect absolute values
 e.g. longer hybridization time means greater signals

Data normalization

standardization methods

• experiment data normalization

- to set unit average expression
- to set unit chosen gene reference expression
- low expression values of greater fluctuations
 - having both reference and sample of low values greater differences necessary for real alteration
- gene data normalization
 - usually normal-like distribution
 - after experiment-wise normalization
 - min / max cutoff of outliers
 - to set zero value as its mean
 - particular genes / proteins generally more (or less)
 expressed / abundant, not important for change detections

data attributes and forms

- experiment description MIAME
 - minimum information about a microarray experiment
 - description of array design and gene expression experiment
- expression data tables
 - text files with genes as rows, experiments as columns

	tissue 1	tissue 2	tissue 3	
gene 1	3.2	2.4	-4.2	-0.1
gene 2	-0.2	1.6	5.9	-6.7

more tests - greater possibility to gain a false positive

- multiple comparison adjustments of p-values
 - having R tests and a p-value p_i of a test
 - Bonferroni correction: p_{i,adj} = R · p_i
 - the most conservative one, always correct
 - Sidak correction: $p_{i,adj} = 1 (1 p_i)^R$
 - slightly less conservative than Bonferroni correction
- stepdown methods, with p-values: p₁ < p₂ < ... < p_R
 - for Bonferroni correction: $p_{1,adj} = R \cdot p_1$, $p_{2,adj} = \max(p_{1,adj}, (R-1) \cdot p_2)$, ...
 - for Sidak correction: $p_{i,new} = 1 (1 p_1)^R$, $p_{2,adj} = \max(p_{1,adj}, 1 - (1 - p_2)^{R-1})$, ...
 - lesser p-values, still rather enough conservative

くロト (過) (目) (日)

Other p-value corrections

- various correction methods
 - Tukey's method
 - for multiple tests on pairwise means differences
 - Scheffé's method
 - for multiple tests on contrasts among varibles
 - Marascuillo's method
 - for multiple proportion comparisons
 - Hochberg's method
 - for uniformly distributed independent p-values
 - under their null hypotheses
- resampling methods
 - suitable for larger amount of replicas, usually not the case with microarrays, of frequent usage in data mining tasks
 - permutation tests, bootstrap method

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Expressom data processing

what to do with the data available

- first to look at the data
 - data transformation and visualization
 - linear methods and non-linear modifications
- altered expression detection
 - standard tests with multiple comparison corrections
 - resampling methods, suitable for huge amounts of data
- intriguing on the data
 - data clustering, regulatory networks
 - expression patterns search, data mining

Data transformation

Linear methods

- data of high-dimensional spaces
 - experiments with huge amounts of properties, e.g. genes
 - heavy usage of covariances between particular properties
- PCA, SVD
 - geometric linear transformations such that projections onto low-dimensional subspaces of the first few dimensions maximize data variations
- factor analysis
 - search for hidden causes which explain most of common variability, i.e. with locking their individual variations
- dimensionality reductions
 - linear initiatization of multidimensional scaling algorithms

< ⊒ >

Covariance matrix

- covariance: $cov(X, Y) = E[(X E(X)) \cdot (Y E(Y))]$
 - correlations for normalized relations
 - standard deviation: $\sigma_X = (E[(X E(X))^2])^{1/2}$
 - correlation: $cov(X, Y)/(\sigma_X \cdot \sigma_Y)$
- normalized data M
 - data centers (i.e. means) for each property set to 0
 - variations set to be unit, neglection of unit scales
 - then we deal with the correlations
- the covariance matrix
 - symmetric matrix with variance / covariance elements
 - multiplication of data matrix $M * M^T$
 - just dot products of the matrix rows
 - we assume, properties index the matrix rows

ロトス値とスヨとスヨと

Data projections

covariance matrix eigenvector technics

- linear projections
 - eigenvectors of the greatest eigenvalues the directions with the greatest variations of the data

< 🗇 🕨

principal component analysis

- subsequent extraction of directions in a respective data space containing maximum of data variation
- the directions are orthogonal each other
- PCA algorithms
 - maximization of direction vector times data matrix product
 - search for the other directions after the projection subtraction
 - eigenvector search of the corresponding covariance matrix
 - iterative search: vector covariance matrix multiplication
- amount of components to extract
 - to have large enough amount of total variance
 - eigenvectors of eigenvalues greater than 1
 - till smooth decrease of eigenvalue sizes

SVD

singular value decomposition

• decomposition of the data matrix into product $M = UDV^T$

- U principal components for M rows (genes)
- V principal components for M columns (tissues)
- D diagonal matrix
- geometric meaning
 - basis transformations of both row / column spaces such that the matrix (i.e. linear mapping) is given by the diagonal matrix
 - correspondence of the first rows of U and V matrices

イロト イポト イヨト イヨト

Factor analysis

- search for hidden factors
 - factors with their loadings, i.e. factor-variable correlations
- PCA under low noise
 - principal component analysis
 - total variance description
- CFA under high noise
 - common factor analysis
 - description of common variance only
- PCA and CFA usually give similar results
- other: ICA (signal processing)

Common factor analysis

- independent variances
 - each variable contains its own variance
- communalities
 - the parts of total variances caused by factors shared with the other variables
 - multiple regression for communality approximation
- factor rotations
 - frequent task after factor extraction
 - the first factor with the highest overall loadings
 - to maximize variances in the loadings

Linerity assumptions

- good as the first approximation, a starting point
- rather weak assumption for real data explorations
- up to now, the new variables (directions / factors) were just linear combinations of the data variables
- nonlinear projections hard to compute
 - weak non-linearity relatively fast and approachable
 - to start with linear combinations with subsequent modifications

Data visualization

multidimensional scaling

- reduction of the high-dimensional space
- frequently: projections onto eigen vectors

・ロト ・ 理 ト ・ ヨ ト ・

3

glass-like ordering

- neglection of long-distance ordering
- short distances of higher priority
- non-linearity
 - linear projections as a starting point
 - nonlinear methods for the requested order
 - vanishing forces for data localization

MDS algorithms

- 2-dimensional figures
 - standard algorithms for graph layouts
 - energy minimization of a system of dynamic springs with stiffness inverse to square of node distances
 - force-directed algorithm for both attractive (for close nodes only) and repulsive forces
- MDS algorithm start
 - start with arbitrary / eigenvector-based positions
 - start with an (eigenvector) one dimensional projection graph layouts on subsequent center-off slices
- MDS algorithm iteration
 - iterate all the positions, with vanishing forces
 - problems with local minima

ヘロト 人間 ト ヘヨト ヘヨト

MDS obstacles

local minima avoidance

- many starting configurations
 - not necessary exact eigenvectors as the start directions
- random node position changes
 - simulated annealing, genetic algorithms, etc.
- covariant node exchanges
 - spin glasses analogy, mutual close nodes transitions

Nota bene:

gene expression, microarray layouts

- Expressome, proteome
 - expression, protein chips
 - data normalization
- Data comprehension
 - linear methods: PCA, SVD, CFA
 - multidimensional scaling