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Computer science basics

From mathematical logic to complexity theories to software.
@ data and algorithms work, roots in pure mathematics
@ applications practical data stores and computation systems

@ mathematical background
- theories of data and computations
- logic and recursion, Turing machines, calculi

@ data and algorithms
- data structures and algorithm development
- complexity descriptions and charcterizations

@ programming, computations
- imperative (common) vs. declarative programming
- functional, logic, constraint technics, templates
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exact systems and their descriptions J

theories metatheories

@ propositional calculus - 'outer’

e pseudoparadoxes: "this sentence is false”
@ predicate (first order) calculus - 'inner’

e quantifiers: axioms vs. deduction rules

@ symbols, terms, formulae
@ axioms, deduction rules, proofs

@ theorems - provability, models - truth
@ recursion and compuations, relation systems
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Recursion

From the beginning to the end. |

@ self-similarity
e function calls on reduced data sets
o efficient for tail recursion

@ inductive computing
o to keep up an invariant - still valid
@ to go through, approaching a target

@ example: square-2 covering
@ invariant: #black = #white - 2
e decreasing the amount of free cells

@ limitations
e halting problem
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Probability

stochastic systems: probability, degree, uncertainty |

@ probability space (22, F,P)

Q - sample space of possible events

e F - g-algebra: complements and countable unions
e P - probability measure

e random variables - measurable functions

@ density / mass functions

uniform: 1/(b —a), 1/n

memoryless (exponential, geometric): Ae =, (1 —p)"!p
normal: 1/(ov/27) - exp[—(x — u)?/(20?)]
homoschedastic variables — normal distribution
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Conditional probability

Probabilities under some prior knowledge J

@ e.g. probabilities of symbols on a string on position n
when symbols on positions n — Kk, ..., n — 1 are known

@ Pr(A|B) =Pr(AnB)/Pr(B)
o take the part of universe where B is valid as the new whole
universe and compute the probability of A therein

e Pr(A|B) = Pr(A) iff A and B are independent random events

@ Bayes’ theorem
e Pr(A;|B) = Pr(B|A;) - Pr(Ay) / Zi[Pr(B|A) - Pr(A)]
@ Pr(A|B) Pr(B) = Pr(An B) = Pr(B|A) Pr(A)
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Statistics

explorative vs. confirmative statistics J

@ explorations: system characterizations
@ mean, median, variance, correlation, etc.
e data-mining, search for interavariable relations

@ confirmations: hypothesis testing
e p-value - probability of wrong rejecting the null hypothesis
e normal distribution of errors
@ parametric tests: based on means and variances
@ continuous distributions
@ (robust) non-parametric tests: based on quantiles

@ multivariate tests
e elimination of the growing probability of wrong Hyp rejecting
e resempling: bootstrap, permutation tests
e Bonferroni corrections
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Theory of Information

complexities of structural descriptions ]

@ Shannon entropy: H = —k Y7 p; log p;
e the least amount of bits for an encoding
@ axioms:

@ defined and continuous
@ growing in variables of the discrete uniform distribution
@ branching into subsystems

@ Fisher information: 1(0) = — aa—;lnf(x;e) df (X; )
e definition: the variance of the score

e suitability of an observable with respect to an unobservable

@ Kolmogorov complexity

e definition: the shortest specification of an object
e Berry pseudoparadox:

@ "the smallest positive integer not definable in 11 words”
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Complexity

computational complexity J

@ asymptotic notation:
e f(n) € O(g(n)) ... upper bound

e limsup, . %‘ <

f(n) € ©(g(n)) ... tight bound
f(n)

g(n)

f(n)

@ 0 < liminfa_ oo <limsup, . [gmy| <o

@ Computation resources
e time complexity
@ space complexity

@ Complexity classes
e polynomial: linear, loglinear, quadratic, ...
@ NP i.e. 'non-deterministic polynomial’
e other: probabilistic, exponential, etc.
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e G=(V,E)
e V vertices, E edges between the vertices
e connected, un/directed graphs, weighted graphs
e degrees of vertices of a graph

@ n x n matrices
e adjacency matrix - a; count of edges between i, j
e degree matrix - non-zeros on diagonal: degree of a;
o Laplacian matrix l; = djj — aj;

@ basic notions

(simple) path - a sequence of adjoint vertices
cycle - a closed path

tree - a graph without a cycle

spanning tree - with all the vertices

@ Euler paths

o to meet all the edges without an edge repeat
e iff; all (-2) the vertices with even degrees

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Algorithms

standard graph algorithms J

@ traversal
e a simple pass through a graph: DFS, BFS
@ minimum spanning trees
e Boruvka’s, Jarnik’s/Prim’s, Kruskal's
@ shortest paths
e Dijkstra’s, Bellman-Ford, Floyd-Warshall algorithm
@ network flows
e Ford-Fulkerson, MPM, Goldberg
@ sort
e topological, scheduling
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Traversal

@ BFS - breadth-first search
e usage of a FIFO queue
e start: put a (root) vertex into the queue
@ next: repeat until the queue is empty
o take the first vertex from the queue
@ put all its (free) adjecent vertices into the queue

@ DFS - depth-first search
e usage of a LIFO stack
e start: put a (root) vertex into the stack
@ next: repeat prolong / backtrack
@ push first available adjacent vertices into the stack
@ remove vertices when there’s no (free) prolongation

@ complexity
e time: [V| + |E| for both
e space: DFS more efficient than BFS
e DFS usually better for heuristics
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@ graph structure

e connected components
@ biconnected components

@ without a separation vertex, iff all edge pairs in a cycle
e strongly connected components
@ connected (<) components of a directed graph

@ connected components
@ just traversals of a graph until met all the vertices

@ biconnected components of graph G
e DFS on the graph G — proxy graph F

@ vertices of F are edges of G
@ connected components of F are the biconnected ones of G

@ strong components
e subsequent DFS on the reverted graph (GR)
e DFS on G from its sink vertex - a source vertex of GR
e result is a DAG of strongly connected components of G
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Shortest paths

@ all vertices: Floyd-Warshall algorithm
e use of adjacency matrix, without negative cycles
e time complexity is O(|V|3)
e search the shortest paths through limited sets of other
verteces
e consequently compare distances through the newly added
vertices

@ single-source: Dijkstra’s algorithm

for positive weights, complexity O(|E| + |V [log|V])

set all the verteces as open

set infinite distance for all but the source vertex

start with the source vertex, set its distance to 0

repeat:
@ take the open vertex with least distance
@ check distances of paths to verteces from the taken vertex
@ set the taken vertex closed

@ the algorithms make use of separation of the problems
onto smaller data subsets
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Dynamic programming

Divide et Conquer )

@ Fermat’s principle

e the optical path is the extremal one
e subpaths are extremal too — accessible to decompositions

@ shortest path

e subsequently optimal solutions up to limited data sets
e the 'divide’ part is linear, i.e. the recursion easily iterated

@ common scheme

e forward search for optimal sub-solutions
e backward reconstruction of the final solution
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Recursion examples

recursion iteratization )

@ tail recursion — simple iteratization
e Dijkstra’s algorithm

@ complex recursion schemes hard to iteratize
e median search

@ median search - linear time
e medians of n-tuple subsets
@ recursively medain of the n-tuple medians
e the current median based separation of the current set
e recursively search in the selected subset

@ remeber: many concrete recursion algorithms lack efficacy
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Markov systems

the future depends on the past through the present J

Pr(Xni1 = X|Xn = Xn, ..., Xo = Xg) = Pr(Xps1 = X|Xn = Xn)

@ i.e. future and past states are conditionally independent
@ possible domain separations
@ physics - time, valid
e other - approximations

@ generalizations
o N-th order Markov process - relevant last N timestamps
@ parametrization: time, sequences, etc.
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Hidden systems derivation

@ deterministic system (visible states)

O O O o — O

\
O o»o/o O

@ stochastic system (visible states, probabilities)
O O O —— O — O
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Simple examples

hidden inner states - known outer manifestations )

static - an examination:
@ inner: understanding a topic
@ outer: answers on questions

dynamic - an islamist behavior:
@ inner: being offended current day
@ outer: some (humber of) burned flags

@ a case: 'flames’-’flames’-'flames’-'nothing’-'flames’

e for a high transition probability of 'offended’ — 'offended’,
it should be rather probable 'being offended’ all the time
(e.g. just out of flags for the one day)
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HMMs on biopolymers

@ detection of a protein domain
@ inner: inside / outside of the domain motif
e outer: actual aminoacyls

@ sequence profile matching
e inner: insert / delete / match to a position of the profile
e outer: actual aminoacyls

@ search for gene sequences inside genomes
@ inside / outside of a gene
e actual nucleotides

The inner states can be / need not be parametrized.
like 'being offended’ vs. 'being offended in a given day’
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HMMs themselves

Finite automaton extension )

@ finite automaton
@ states, transition function

@ FA inner states
e structural states - lesser amount of states
@ O outside a gene « inside a gene O
e linearized states - greater amount of states
@ — states for position n — states for positionn + 1 —

@ linear passing through the inner states
e conditional independence parametrization: time, sequence

@ linear outer sequences of visible events
e stochastic regular grammars
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HMMs usage

three types of problems:

@ most probable path for a HMM, sequence pair given

@ one concrete derivation path
@ sequence alignment

@ probability of a given output sequence on a HMM

e overall probability of a sequence
e domain detection

@ motif HMM parameter profiling for a sequence set

o iterative parameter adjusting
e HMM training
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HMM algorithms outline

paths processing:

@ assumption of Markovian processes
e — dynamic programming
e tail recursion, simple linear iteration

@ passing through the HMM states

e computing maximal or overall probabilities along the steps
e maximal derivation: Viterbi algorithm
e overall derivation: forward algorithm

@ the forward algorithm used as a part of HMM profiling

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMM algorithms step

stepwise probability products J

@ invariant assumption on each (relevant) inner state:
e maximal / overall probabilities for inner states are set

@ take next observable object
e for each currently accessed inner state

@ multiply its probability for each accessible state
with the transition probability times the output probability

o for each recently accessed inner state

@ sum the new probabilities (forward algorithm)
@ choose the greatest new probability (Viterbi algorithm)
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HMM probabilities

n n+1
i O cii O 0i(n+1) ij inner states
' CHU A o T
o< S
i O & O 79 (n+1)

@ auxiliar probabilities (under a given HMM)
@ Pri(n+1)=Pri(n)-a-o0i(n+1)
e Prj(n+1)=Prj(n)-a;-oi(n+1)
@ most probable derivation (profile HMMs)
e Pri(n+ 1) = max(Prii(n + 1), Prj(n + 1))
@ overall derivations (domain HMMs)
4] Pri(n + 1) = Pr”(n + 1) + Pru—(n + 1)
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Path algorithms for HMMs

easy to understand algorithms ]

@ start with all (initial) inner states
e initial states for parametrized FA

@ set either initial or initial x output probabilities to the states
e initial probabilities for special 'quiet’ initial states

@ complexity: |inner states|? x string length
e inner states for a single step in the case of linearized states

update sequentially inner states:
@ Viterbi algorithm
e compute new maximal probabilities

@ Forward algorithm
e compute new overall probabilities
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Search results

@ each sequence has a derivation probability,
which ones are those with a found domain?

@ statistics on NLL scores

NLL = — log(Pr (overall))

rather low probabilities — better to compute with log

log values roughly under normal distribution, with outliers
Z-scores, i.e. distances in units of standard deviations
smoothened deviations for sequences of similar lengths

@ iterative outlier search
e compute smoothened standard deviations
o take out sequences with high (e.g. > 4) Z-scores
e all the outliers are taken as with successful search
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HMMSs reestimations

@ start of adjusting the transition probabilities
e under a given sequence and running HMM parameters
o forward probabilities computation:
@ oi(n) =Pr(O(1,...,n),inner(n) = i[HMM)
probability of being in the state i in the step n
and with outputing the initial part of the string
e backward probabilities computation:
@ Gi(n) =Pr(O(n+1,...,N)|inner(n) =i, HMM)
probability of outputing the terminal part of the string,
starting from the state i in the n-th step

@ normalization for reading n + 1-th outer symbol
e it has to pass from a state i into a state |

@ Gij(n) = ai(n) - aj -0j(n+1)-G(n+1)

@ &ij(n)=¢j(n)/ 35> Gi(n)

@ overall expected number of transitions i to j:

&Gij=2_n&ij(n)

@ to be continued
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HMMs profiling

EM - expectation maximization J

@ start with apriori probability parameters
@ subsequently use all the relevant output strings
e stop the adjusting when small changes

@ iterate the parameters adjusting

e compute overall expected numbers of transitions and

analogically symbol outputs from particular inner states
e normalize to have total unite probabilites:

Pr(i,j) =&/ 22 i
Pr(s|i) = 0i(s)/ >_s 0i(s)
@ for i, j inner states, s possible output symbols
@ just rate probabilities of having the-vs.-any symbol outputs
@ the new probabilities serve as the new parameters
e backward only probabilities usage for linearized HMMs
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Profiling problems

optimization class of algorithms J

@ local optimum
@ — to use a system of profilings
e probabilistic climbing methods: simulated annealing, etc.

@ overfitting
@ — to add noise and/or apriori knowledge
e regularization to avoid biases of small training set cases
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HMMSs limitations

when to use something more profound / complex )

@ protein profiles - relatively sufficient
@ gene finding - relatively sufficient

@ RNA folding - highly insufficient
e long-distance interactions

@ MCMC and hierarchical HMMs

e for protein domain characterizations
@ Bayesian networks

e for complex system development

@ Stochastic context-free grammars
and Covariance models

e for RNA matching and folding predictions
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ltems to remember

Nota bene: )

graphs, dynamic programming

@ HMMs

o definition
e examples

@ Algorithms

e paths
o limitations
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