Bioinformatics

Introduction: biology, genes

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.5

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Introduction

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

methods for dealing with huge amounts of biological data experimental data: sequences, microarrays, structures

Distinctions

- theoretical bioinformatics
 - model and algorithm development
- technical bioinformatics
 - databases and computation systems
- computational biology
 - practical usage of bioinformatics tools

connections: data-mining, medical informatics, text parsing

Course topics

- background knowledge
 - introduction into molecular biology
 - graphs and Hidden Markov Models essential!
- 2 DNA sequences genomes
 - fragment assembly, exact matching
 - approximate matching, heuristic algorithms
- gene expression microarrays
 - linear methods, factor analysis, scaling
 - clustering, nets, data-mining
- structures and databases
 - structural biology, structure prediction
 - protein, RNA structures, genomes with genes
- computational biology
 - task examples, gene ontology
 - bioinformatics software tools

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

1

Never say always.

- DNA and stability (retro)transposomes
- horizontal gene transfer
- RNA viruses, viroids, virusoids, RNAzymes.

Easy to make misunderstandings

- accidental shapes, events.
- (non-existent) extinction periods
- DNA junks necessary or trash?

Physics

It stands always.

Relevant parts:

- thermodynamics what is possible
- kinetic theory how fast it is

Mathematical point of view:

- nonlinear dynamics
 - description of open systems
- game theory
 - linear approximation near equilibria

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Molecular interactions

- energy minimization:
 - hydrogen bonds, electrostatic, van der Waals interactions
- entropy maximization:
 - amount of accessible states

hydrophobic effect

- preferred interactions water-water
- count of water shell configurations

Enzymatic kinetics

Description based on graphs with steady state assumptions.

Michaelis-Menten equation

$$E + S \stackrel{k_1 \longrightarrow}{\longleftarrow} ES \quad k_2 \longrightarrow E + P$$

$$v = v_{max} rac{[S]}{[K_M] + [S]}$$
 $v_{max} = k_2 * [S]$ $K_M = (k_{-1} + k_2)/k_1$

dual role of enzyme-substarte affinity

- higher affinity \rightarrow faster ES formation
- lower affinity \rightarrow faster P release

receptor-ligand binding alike

Central dogma

The central dogma of molecular biology:

 $\circlearrowright \mathsf{DNA} \to \mathsf{RNA} \to \mathsf{Proteins}$

- DNA
 - stable, data carrier, replication
 - very weak possible enzymatic functions
- RNA
 - less stable, can be a data carrier as well
 - transfer: transcription, translation
 - substantial enzymatic functions translation by rRNA
 - gene expression regulation
- Proteins
 - structural, enzymatic functions

DNA data

DNA: semi-conservative replication

- stem cells divisions
 - asymmetric strand distribution

high inter-species genome similarities

- why: computation like usage
 - how to do something, how to interact
 - no plans of final structures, organs

highly unrelated expression profiles even for many conservative ORFs

NA molecules

Nucleic acids: DNA, RNA

DNA double helix

- two complementary strands
- antiparallel directions
- mutation and repair
 - zygote divisions a critical stage
 - expressed genes: both mutations and repair
 - aging as a defence against cancer?
- RNA
 - data carrier for some viruses and alike
 - various structures, enzymatic functions

several levels of packing

tight chromosomal structures formed during M phases

components

- DNA: centromeres, telomeres repetitions
- Proteins: histons, transcription factors
- chromatin
 - homochromatin accessible to expression
 - hetrerochromatin tightly packed

ヘロン 人間 とくほ とくほ とう

Terminology

DNA strands

Chromosomes:

- + (plus) strand
- – (minus) strand

Every position according to the plus strands!

Genes:

- coding strand the 'same' sequence as mRNA
 - the 'same': transcribed RNA is heavily processed
 - can be on either +, strand of a chromosome
- template strand actually transcribed, i.e. complementary

ヘロト 人間 ト ヘヨト ヘヨト

Genes

Positions:

- promoter region: ranks up to -1
 - most of binding sites for transcription factors
- transcribed region: ranks from 1
- Parts:
 - exons expressed sequences
 - parts of final mRNAs, terminal and coding parts
 - introns intervening sequences
 - enabling complex protein domains
- Splicing:
 - common for eukaryotes and Archea
 - alternatives promoters, polyadenylation, introns/exons

(日本) (日本) (日本)

1

Gene expression

• 3D (e.g. of human brain) gene expression maps

Transcription

- DNA \rightarrow RNA
- alphabets: ATCG → AUCG

Translation

- RNA \rightarrow Proteins
- triplets of AUCG → stopcodons + 20 aminoacyls

Reverse transcription an inverse process: $RNA \rightarrow DNA$

Martin Saturka

www.Bioplexity.org

Bioinformatics - Introduction

・ロト ・ 理 ト ・ ヨ ト ・

ъ

• mRNA - information carrier

ncRNA - non-coding RNAs

- (transfer) tRNA helper function
- (ribosomal) rRNA translation function
- snRNA splicing, transcription factors, telomeres
- snoRNA rRNA processing
- (guide) gRNA mRNA editing
- (micro) miRNA mRNA inhibition
- (small interfering) siRNAi RNA interference

ヨト くヨトー

Gene expression is generally not a 'yes'/'no' process.

- DNA structure: regulation by methylation GC pairs
- level of expression
 - by transcription initiation frequency transcription factors
- other factors
 - transcription termination
 - prokaryotes
 - alternative splicing
 - eukaryotes
 - mRNA inhibition and/or degradation
 - both natural and therapeutic
 - mRNA editing

Prokaryota Archea Eukaryota

Cells - basic blocks of living organisms

exceptions: parasites - viruses, virusoids, viroids, what else?

- particular genes expressed on various levels
- physiological states: keeping the homeostatsis
- Eukaryotic cell cellular membranes:
 - separartion from outer space
 - distinct inner compartments
- Nucleus chromosome sets: haploid (n), dipoid (2n), etc.
 - pairs of antiparallel DNA molecules
 - many proteins (histons, polymerases, transcription factors),
 - various RNAs

< ⊒ >

Cell cycle

passing a cell throughout its divison cycle

$$G_1 \to S \to G_2 \to M \to G_1 \text{ phases}$$

G₀ is the off cycle phase

- \circlearrowright stem cells \rightarrow differentiation
 - cell death: apoptosis vs. necrosis
 - cancer: two necessary conditions
 - immortal (stem cells each tumor?)
 - out of the contact inhibition

Regulation

Signalling pathways

- receptors ligands
- autocrine, paracrine, endocrine signalling

Protein phosphorylation

- regulation of enzymes, receptors
- kinases vs. phosphatases

Protein degradation

ubiquitin proteasome system

< 🗇 →

Inter-cellular interactions

Extracellular matrix

- outer cytoskeleton'
- cell adhesion, interaction mediation

Immune system

- over-feeding necessary for survival
- low dirt exposure → allergy (hypothesis)

Self vs. non-self distinction

- 'basic instinct' of living matter
- markers: saccharide surfaces

Populations

- species
 - evolution dynamics
 - partially understood
- organisms
 - population dynamics
 - deeply understood
- genes: 'selfish gene'
 - competition inside DNA strands
 - competition between organisms

ヨトメヨト

Population dynamics

basic strategies

- r high growth rate
- K capacity utilization

logistic growth

$$\dot{x} = r \cdot x \cdot (1 - x/c)$$

 $x(t) = c \cdot \exp rt/(\exp rt + s)$

< 🗇 🕨 <

프 에 에 프 어

ъ

Perpetual competition

"It takes all the running you can do, to keep in the same place."

- parasites vs. hosts
 - any new attack or defence evokes a counter-action
- trees of tropical forests
 - tree hights are individual drawbecks
 - tree hights are competition necessity

Evolution basis

the same basis as the reduction to the molecular level

clashes alleged to religions like flat-earth clashes

- Gene duplications
 - new weak accidental functions of genes
 - subsequent function improvements
- Extinctions exponential process
 - formerly a wrong cycle proposed based on half-time

Linear games

Small changes around an equilibrium.

- suitable linear approximation
- many natural populations obey it

Zero vs. non-zero games

- Non-zero games
 - possible cooperation
 - targeting win-win strategies
- Zero games
 - attrition wars
 - misunderstanding: mercantelism

★ 문 ► ★ 문 ►

The least loss strategy

outfit is not worsened by strategy changes of competitors
nature tries everything and (immediately) penalizes

	١q	ll (1-q)
Ар	0.85	0.70
В (1-р)	0.60	0.90

example - virus I/II, vaccine A/B q - virus type probability p - vaccine usage fraction

$$\begin{split} E(p,q) &= 0.85pq + 0.7p(1-9) + 0.6(1-p)q + 0.9(1-p)(1-q) \\ E(p,q) &= q(0.45p - 0.3) + 0.9 - 0.2p \rightarrow p' = 2/3 \\ E(p,q) &= p(0.45q - 0.2) + 0.9 - 0.3p \rightarrow q' = 4/9 \\ E(p',q) &= E(p,q') = 0.7667 \end{split}$$

evolutionary stable strategies

 $E(M,P) < E(P,P) \lor [E(M,P) = E(P,P) \land E(M,M) < E(P,M)]$

- P population, M mutation
 - qualitative estimation of partial derivatives
- Hawks vs. Doves: population: P = pH + (1-p)D

hawks as the mutation, for doves alike

pay-offs	hawk	dove	hawks:	7/12
hawk	-25, -25	50, 0	doves:	-
dove	0, 50	15, 15	00063.	5/12

 $E(P, P) = -25p^2 + 50p(1-p) + 0(1-p)p + 15(1-p)^2$ $E(H, P) = -75p + 50 \quad E(P, H) = -25p \quad E(H, H) = -25$

프 에 에 프 어

to make most offsprings for least energy

males vs. females

- sex/progeny costs
- offspring feeding
- Restraints:
 - females: to force partner to spend energy
 - males: not to take care about other genes
- necessary female cooperation
 - can result in killing a non-cooperating female

Data acquisition

Data types

- sequences: what is it similar to?
 - sequencing fully automated
 - enzymatic polymerization, fluorescence detection
 - alternatives: pyrosequencing, nanopore sequencing, solid-phase sequencing
- gene expressions: what is it coregulated with?
 - acquisition partially automated, progression
 - DNA chips microarrays: hybridization, fluorescence
 - protein chips, surface plasmon resonance, in-situ methods
- structures: how does it look like?
 - methods: RTG diffraction, NMR spectroscopy
 - alternatives: electron microscopy, spectroscopy, AFMs

Molecular biology methods

Enzymatic reactions

- polymerization PCR, reverse transcription
- restriction endonucleases, ligases, etc.

Genetic material transfer

• vectors: plasmids, viruses, artificial chromosomes

Pairing / binding

- nucleic acids hybridization blotting
- proteins: antibodies antigens

Biophysics methods

Spectroscopy

- fluorescence
- NMR, IR, Raman

Microscopy

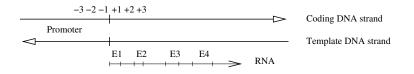
electron microscopes

AFMs

Diffraction

X-ray crystallography

ヘロト 人間 ト ヘヨト ヘヨト


ъ

Items to remember

Nota bene:

Gene structure

- promoter, exons, introns
- positions according to plus strands

Gene expression

- transcription, translation
- regulation on several levels

ヘロト ヘアト ヘビト ヘビト

ъ