Bioinformatics

Structural and global properties

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.52

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Structure

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Structures

Sequence based secondary structures, domains and folding

- computational structure predictions
- experimental data based explorations

Structure explorations

- o dynamic programming
 - secondary structure prediction
 - RNA folds, CM and SCFG
- structural biology
 - experiments, comparisons
 - combinatorial chemistry, docking
- feature characteristics
 - hydrophobic packing
 - global properties

.≣⇒

from sequences to 3D structures

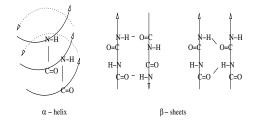
primary, secondary, tertiary, quaternary structures

- primary linear sequences of monomers
 - modifications: crosslinking, cleavage, ligation
- secondary: local structural motifs
 - regular simple sturctures vs. random coils
- tertiary: whole single molecule structures
 - folds, complex, dependency on environments
- quaternary: molecular complexes
 - enzymatic complexes, cytoskeleton, capsids

Secondary structure

systematics of local structures of proteins and nucleic acids

- proteins
 - Ramachandran plot of dihedral angles
 - α -helices, β -sheets, coils, others


helices:
$$\beta$$
 - sheets: μ down down

- RNAs
 - base pairing: hairpins stem / loop
 - pseudoknots, kissing structures
- DNAs
 - relatively rigid double helix
 - G and C quadruplex structures

(E) < E)</p>

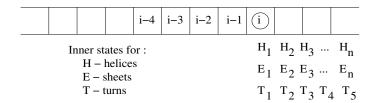
Protein local structures

the basic protein building blocks

- α -helix ($\psi(i) + \varphi(i+1) \doteq -105^{\circ}$)
 - right-handed, 3.6 residues per turn
 - approximately each fourth residuum to the same direction
- β-sheets
 - parallel (-120°, 115°) and anti-parallel (-140°, 135°) cases
 - alternating residuum directions, with respect to the plane

▶ ★ 臣 ▶ …

Protein local predictions


mediocre results, methods based on dynamic programming

specifics to consider

- start at the N' ends first folded
- proneness to helices, beta sheets, structure breakers
- assumed residua by multiple sequence alignment
- feature e.g. hydrophobic character alternations

altered HMM algorithm

- *n*-th order Markov model
- inner states: helices, sheets, turns, coils
- consider the shortest structure lengths
 - either to look the shortest lengths backward or multiple inner states - for (short) structure lengths

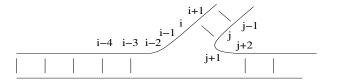
α -helix, min 4 residues

propensities: MALEK β-sheet, min 2 (5 ↑↑) residues propensities: YFWTVI turns, 3-5 residues propensities: GP

<ロ> (四) (四) (三) (三) (三) (三)

secondary and super-secondary structures

- make secondary structure prediction
 - input (outer) string: primary structure
 - inner states sequence: secondary structure
- run subsequent higher order HMM prediction
 - input (outer) string: secondary structure
 - inner states sequence: complex motifs


- \dots AGPGAQGLAE $\dots \rightarrow \dots$ HTTTHHHHHH. \dots
- $\dots \texttt{HTTTHHHHHH} \dots \rightarrow \texttt{helix-turn-helix}$

RNA

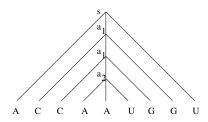
nucleotides pairing - strong long range interactions

standard and non-standard ribonucleotide pairing

- HMMs: without long range interactions, not sufficient
- covariance versions of locality based algorithms
 - covariance Gibbs sampling pairs of trials
 - covariance extension of HMMs pairwise probabilities

Automata and grammars

- Chomsky-Schützenberger hierarchy
 - regular languages
 - context-free languages
 - non-terminal symbols (with the start symbol)
 - terminal symbols, the outer alphabet
 - rewrite rules
 - context-sensitive languages
 - recursive languages
- stochastic models
 - finite automata / regular grammars \rightarrow HMMs
 - pushdown automata / context-free grammars \rightarrow CMs


nonterminals: s, a_1, a_2 terminals: A, C, G, U $s \rightarrow A a_1 U$ $a_1 \rightarrow C a_1 G$ $a_1 \rightarrow C a_2 G$ $a_2 \rightarrow A A U$ terminals: A, C, G, UA CC...CCAAUGG...GGU

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Covariance model

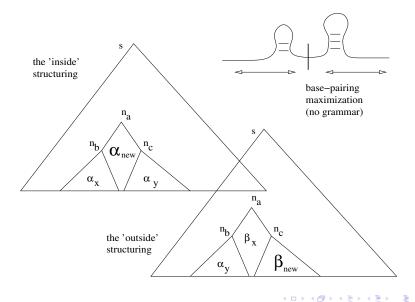
SCFG (PCFG): stochastic (probabilistic) context-free grammars

- sets of: terminals, nonterminal, probabilistic rules
- probability of rule sums for each nonterminal is unite
 - rewrite rules play roles of both inner transitions and symbol outputs of HMMs

60%:	a_1	\rightarrow	C a1 G
10%:	a_1	\rightarrow	$A a_1 A a_1 A$
30%:	a_1	\rightarrow	C a₂ G

CM algorithms

time complexity of n^3 for lengths of parsed sequences


- weighted CYK algorithm for the most probable production
 - analogy of the Viterbi algorithm of HMMs
- inside / outside algorithm for SCFG adjusting
 - analogy of the forward / backward algorithm of HMMs
- the Inside and weighted CYK algorithms
 - difference: 'inside' makes sums, 'CYK' takes maxima
 - iterative substring parse generation (for the CYK)
 - first, finding the best parses for short subsequences
 - for larger subsequences, make the best separation onto the most paired / the best parsed subsequences
 - possibility to do separations at just single points

Inside algorithm

- normalizing grammar rules for just binary tree parses
 - $n_a \rightarrow n_b n_c$ for inner state changes
 - $n_a \rightarrow T_r$ for outer symbol outputs
- square matrices indexed by sequence positions
 - each matrix for subsequences from a single non-terminal
 - just one matrix for a non-grammar / best pairing search
- first, filled with zeros initial parse weight sums
 - diagonals with probabilities of respective symbol outputs
- iterative matrices filling out of the main diagonals
 - computation for each matrix of a nonterminal symbol
 - for every subsequence make its two-pieces separation
 - compute parse weights for the pieces of the subsequence for generation form any pair of nonterminal symbols
 - multiply with the probability of the nonterminal pair rule
 - the end is for the whole sequence from the start symbol

・ロト ・ 理 ト ・ ヨ ト ・

Algorithm structuring

Inside / Outside

- the Inside algorithm: $\alpha(i, j, n_a)$
 - probability sums of all parse trees of subsequence (*i* to *j* positions) generated from the n_a nonterminal
- the Outside algorithm: $\beta(i, j, n_a)$
 - probability sums of all parse trees without counting the probabilities of the (*i* to *j* positions) subsequence generation from the n_a nonterminal

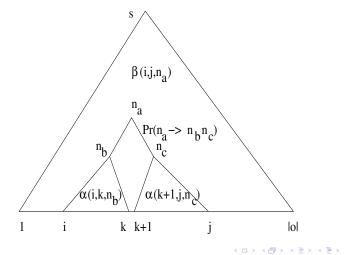
$$\begin{array}{lll} \alpha(i,i,n_a) & = & \mathsf{Pr}(n_a \to o(i)) \\ \alpha(i,j,n_a) & = & \sum_{n_b} \sum_{n_c} \sum_{k=i}^{j-1} \alpha(i,k,n_b) \cdot \alpha(k+1,j,n_c) \cdot \mathsf{Pr}(n_a \to n_b n_c) \end{array}$$

- $\beta(1, |o|, n_s) = 1$ for the start non-terminal
- $\beta(1, |o|, n_z) = 1$ for a non-start non-terminal

$$\beta(i, i, n_a) = \sum_{n_b} \sum_{n_c} \sum_{k=1}^{i-1} \alpha(k, i-1, n_b) \cdot \beta(k, j, n_c) \cdot \Pr(n_c \to n_a n_b) + \sum_{n_b} \sum_{n_c} \sum_{k=j+1}^{|o|} \alpha(j+1, k, n_b) \cdot \beta(i, k, n_c) \cdot \Pr(n_c \to n_b n_a)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

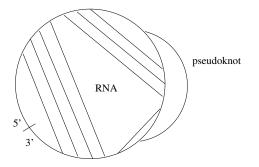
CM profiling


- the covariance model can work without a grammar
 - just with maximizing base pairing poor results
- having a grammar, we need to adjust the probabilites
 - analogically to HMM profiling
- parameter reestimation by expected times of a rule usage
 - divided by all the rules usage from the non-terminal
- new output probabilities
 - new $Pr(n_a \rightarrow T_r) = c(n_a \rightarrow T_r)/c(n_a)$
 - count of n_a used to generate the terminal T_r $c(n_a \rightarrow T_r) = \sum_{i,o(i)=T_r} \beta(i,i,n_a) \cdot \Pr(n_a \rightarrow T_r)$
 - count of n_a used to generate anything $c(n_a) = \sum_i \sum_j \beta(i, j, n_a) \cdot \alpha(i, j, n_a)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Profiling counts

• new $Pr(n_a \rightarrow n_b n_c) = c(n_a \rightarrow n_b n_c)/c(n_a)$


 $c(n_a \rightarrow n_b n_c)$ the count of n_a used to generate a non-terminal pair $n_b n_c$ is $\sum_{i=1}^{|o|-1} \sum_{j=i+1}^{|o|} \sum_{k=i}^{j-1} \beta(i, j, n_a) \cdot \Pr(n_a \rightarrow n_b n_c) \cdot \alpha(i, k, n_b) \cdot \alpha(k+1, j, n_c)$

ъ

CM obstacles

- high time complexity
 - not suitable for large RNA molecules
- pseudoknots
 - usually low depth subtree separations

ヘロト ヘアト ヘビト ヘビト

ъ

Physical approaches

energy minimization

- while symbolic base-pairing approaches popular, physics agnostic methods suffer from the ignorance
 - many dispersed short base pairing unfavourable
 - different base-pairs of different strengths
 - minor bases common in RNA molecules
- complex RNA structures
 - complex molecular modeling and stochastic grammars
 - alignment based structure prediction
 - many RNA molecules with known folds

ヘロト ヘ戸ト ヘヨト ヘヨト

Experimental technics

structural biology

necessary source of solid molecular structure data

- standard technics
 - crystallography
 - inner cores generally correct
 - reduced possibilities for surfaces and domain flipping
 - NMR spectroscopy
 - less accurate than X-ray diffraction
 - measurements in more natural environments
 - IR, Raman spectroscopies
 - simpler, for vibrations of specific parts
 - EM, AFM
 - for structures of greater molecular complexes
 - other methods
 - many kinds of spectroscopy and microscopy, ultracentrifugation, chromatography, etc.

ロトス値とスヨとスヨン

3

Structure refinement

frequent usage

- experimental data adjustment
- exploring small alterations
- short macromolecular dynamics
- states of small molecules
- molecular mechanics
 - statics, energy minimizations
 - standard hill-climbing methods
- molecular dynamics
 - intensive computer simulations
 - amount of solvent, long range interactions
- stochastic dynamics
 - Langevine dynamics extra random forces
 - Monte Carlo probabilities, not forces

・ 同 ト ・ ヨ ト ・ ヨ ト …

1

biomacromolecules: classical forces approximation

quantum potentials for ligands, limited areas

- environment approximation
 - charge shielding, hydrophobic interaction, entropy

empirical potentials

- bonds, bond angles, dihedral angles
- electrostatic, van der Waals forces
- implicit solvatation

く 同 と く ヨ と く ヨ と

Structural alignment

structure comparison and prediction

• comparing similar structures

- minimizing root mean square of distances
- distance matrices for chosen atoms
- sequence to structure alignment
 - prediction of structures of large protein blocks
 - popular methods with growing staructural databases
 - structural alignment onto structures of similar sequences
- protein threading
 - threading 1D sequences onto 3D structures
 - usable technics with large structural databases available
 - chance of a strucutre with a domain of a similar sequence

Enzyme activity

proteins been most studied, RNAs as the current 'big thing'

several basic facts

- active sites formed by sequence-distant residua
- induced fit action structure adjustment on substrates
- enzyme activity modulation by cofactors and coenzymes
- structure change as allosteric regulation of many enzymes
- in evolution, function interchange as receptors
- protein flexibility
 - enabling huge amount of protein functions
 - path to intentionally regulate enzyme functions
 - path to escape intentional regulations

ロトス値とくほとくほと

Ligand docking

- combinatorial chemistry
 - drug design de novo, known substrate alterations
 - usage in medicinal chemistry, pharmaceutical industry
 - computational reduction of vast amount of ligands
- QSAR approaches
 - quantitative structure-activity relationship
 - rules for combinatorial ligand construction
- o docking methods
 - generation of possible ligand conformations
 - initial ligand positions and orientations
 - molecular mechanics to minimize interaction energy
 - too tight bindings lack entropy contributions

ロトス値とスヨとスヨン

Protein folding

random vs. natural sequences

- random polypeptides do not form folded structures
- proteins with folded and denaturated forms
- folding paths
 - Levinthal paradox too large amount of degrees of freedom thus sampling just a minor fractions of them possible
 - funnels of folding paths, directing to the right conformations
 - many proteins need chaperons for the right folds
 - dual forms of prions, probably of many other (innocent) proteins, hidden by cellular degradation pathways as well

くロト (過) (目) (日)

Fold predictions

threading - global structure predictions

- inverse approaches more feasible than direct predictions
- threading of altered structures onto the original folds
 - generated databases of such threaded sequences
- search threading databases for similar fragments
- arrangement of the subsequences onto the structures
- scoring with coarse-grained pseudo-energy functions
 - better with experimental (e.g. NMR) distnace constraints

properties along the whole sequences

- hydrophobic character
- regulatory active sites connection
- position vs. frequency views
- auto-correlation, repetitions
- structure recognition by hydrophobicity distribution
 - membrane proteins with specific characteristics

Sequence profiles

- float-point sequences
 - hydrophobic values, charge values
 - structure prediction by profile similarity
- cores vs. surfaces
 - hydrophobic cores as structure identification
 - convex and alpha hulls surfaces for protein docking
- wavelet analysis
 - localizing at both position and frequency spaces
 - used for protein core predictions on hydrophobic scales
 - the reliability claimed similar to that of standard secondary structure predictions

ロトス値とスピアメモト

Qualitative modeling

qualitative topology and flexibility

- discrete structure modeling
 - hydrophobic packing
 - frustration minimization
- qualitative dynamics
 - coarse-grained domain vibrations
 - normal modes of the domains

Other biomacromolecules

saccharides - the next 'big thing'

lipid membranes

- separation of the inner vs. the outer
- surfaces with protein and carbohydrate markers

carbohydrates

- major roles in immune system, cell recognition
- common glycosylation of lipids and proteins

Items to remember

Nota bene:

molecular structure hierarchy

- Secondary structure predictions
 - proteins
 - RNAs
- Higher order structures
 - alignments
 - global methods

프 에 에 프 어 - -

ъ