Bioinformatics

Genomes: assembly, sequences, genes

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.4

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Genomes

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Genomes

Genome assembly and standard initial genome processing.

- genome assembly and subsequent standard tasks
- sizes: H. sapiens: 3 · 10⁹ bp, D. melanogaster: 1.3 · 10⁸ bp,
 S. cerevisiae: 2 · 10⁷ bp, E. coli: 4 · 10⁶ bp, Phage λ: 5 · 10⁴ bp

Standard tasks

- fragment assembly
 - standard graph algorithms used
 - advanced methods and repetitions
- exact matching
 - sequence localizations
 - start of heuristic algorithms
- gene finding
 - markers for gene recognition
 - probability methods, comparisons, HMMs

▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

э

Chromosomes

pairs of antiparallel complementary double-helix strands

ATGC alphabet, 64 possible 3-tuples, 3 of them nonsense ones

- nucleotides:
 - pentose with 3 hydroxyl groups
 - base (attached to 1' hydroxyl)
 - (mono/di/tri) phosphate (on 5' hydroxyl)
 - one free 3' hydroxyl group
 - orientation $5' \rightarrow 3'$
- bases: adenine, thymine, guanine, cytosine (uracil)
- repetitions (tens of percents of eukaryotic genomes)
 - usually not sequenced

ヘロン 人間 とくほ とくほ とう

Sequencing methods

main sequencing types

methods:

- enzymatic (polymerization)
- chemical (degradation)
- complementarity hybridization
- new methods solid phase

enzymatic:

- dideoxyribuncleotides
- pyrosequencing
- bead parallelized

프 🖌 🛪 프 🛌

Standard sequencing

shotgun method - libraries of small fragments sequencing

- polymerase chain reaction
- particular ddNTP addition
- fluorescence detection
- sequencing data formats, chromatograms
 - SCF binary data of fluorescence peaks
- prepared sequences data formats
 - fasta, annotated (GenBank, EMBL, etc.)

```
>Sequence 1
```

. . .

```
>Sequence 2
```

. . .

(E) < E)</p>

Fragment assembly

- concatenation of sequenced fragments into contigs
 - fragments cca 500 bp
- overlap-layout-consensus
 - Hamilton paths
 - NP-complete problem
 - standard method used
 - hard to use for repetitions
- overlap graph methods
 - transformation into Euler paths
 - vertex & edge unification
 - error corrections 'inside'
 - used for some bacteria
- branching approach
 - clustering fragments into sequence similarity group
 - first assembly inside groups into larger fragments
 - second assembly the larger fragments into contigs

currently the method being used

assembly of all the fragments into a continuous superstring

- shortest superstring:
 - vertices sequence fragments
 - edges (maximal) fragment overlaps
- overlap: overlaps of the fragments
- layout: larger contig construction
- consensus: polymorphism abandoning
- error prone, computationally intensive, layout and consensus by multiple checking
 - easy to implement, computer clusters available

・ 同 ト ・ ヨ ト ・ ヨ ト

Graph paths

- Hamiltonian paths
 - visit each vertex exactly once
 - NP-complete problem
- Eulerian paths
 - visit each edge exactly once
 - linear problem
 - directed graphs: for balanced ones
 - undirected graphs: even degrees for all (but two) vertices
- Eulerian algorithm
 - start (arbitrary) available path
 - augment current path, when finished:
 - all edges used augment the old path with the new path
 - some edges free use them for a new path start and augmenting

ヘロン 人間 とくほ とくほ とう

1

Sequencing by hybridization

an array of all the I-mers

- hybridization of a fragment on the array
- concatenation of detected *I*-mers
- not a suitable practical method
 - pradigm for gene expression and SNP arrays!
- overlap graph approach
 - concatenation of the *l*-mers
 - Hamiltonian path problem
- subsequences approach
 - concatenation of sub *I* 1-mers
 - Eulerian path problem

・ 同 ト ・ ヨ ト ・ ヨ ト …

Eulerian path approach

usage of inner vertex and edge structures

- both verices and edges are sequences
- de Bruijn graphs
 - super-graphs where edges are vertices of the old graph
 - construction of the repeat and de Bruijn graphs with many obstacles
- HBS like approach
 - short *k*-mers made out of the sequenced fragments
 - good for genomes with false repetions
 - used for some hard assemble bacterial genomes
 - N. meningitidis
 - not used for human genome: large, real repetitions

DNA publishing

- data available
 - data state
 - sequenced regions
 - masked regions
 - tagged sequences
 - polymorphic sequences
 - gene sites
- masking coordinates
 - various repetition classes not suitable for search
- STSs sequence-tagged sites
 - unique chromosomal sequences (200 500 bp)
 - ESTs expressed sequence tags
 - similar, but from cDNA sequences, i.e. from mRNA

Bioinformatics - Genomes

(雪) (ヨ) (ヨ)

Polymorphism

highly polymorphic sites

- SNPs [snips]
 - single nucleotide polymorphism
 - human: every 100-300 bp (2/3 of them: C \rightarrow T)
 - cca 90% of human genetic variation
 - TSC The SNP Consortium
 - DNA of 24 individuals, and more
- forensic usage
 - SNPs, some repetitive sequences
- GATTACA phenomemon
 - genetical 'brave new world'

・ 同 ト ・ ヨ ト ・ ヨ ト …

sequence localization

exact matching

- where a sequence is exactly located
- standard algorithms available
- linear time search
- approximate matching
 - allowed (similar) mismatches
 - with or without insertions, deletions
 - 'fuzzy' definition of similarity

Exact matching

where to use the exact matching

usage:

- location of a given sequence
 - STS set localization
 - faster than on a whole genom
- multiple search
 - restriction (palindromic) sites
 - G | AATTC for EcoRI
 - start of heuristic algorithms
 - motif search, comparison

Algorithms

- Boyer-Moore
 - standard algorithm for single word search
 - simple kind of constraint programming
- Aho-Corasick
 - standard algorithm for multiple word search
 - efficient trie dictionary usage
- other algorithms
 - Rabin-Karp
 - uses hashing
 - plagiarism detection

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Tries

re'trie'val structures - dictionary storage

biological, bioplexity, in, inn, inner, input, logic

프 > 프

Aho-Corasick algorithm

- automaton creation trie, three functions
 - match case transition
 - goto function trivial
 - always set for the initial node
 - fail case transition
 - fail function
 - construction through a queue
 - output function
 - initial values trivial
 - update through a queue
- automaton search
 - reads character by character
 - match case: pass through the goto function
 - fail case: pass through the fail function
 - write by the output function

日本 (國本 (国本 (国本))) 国

Automaton creation

- make the initial trie with goto and initial output functions
- first cycle on the initial trie node:
 - take all the considered symbols
 - if there is a way out of the initial symbol by the symbol
 - put the entered new node on the top of the queue
 - set the fail (on the new node) to lead to the initial node
- then cycle in breadth first manner:
 - while is not the queue empty, take off first node and for all the considered symbols, and if *goto* leads somewhere
 - put the newly enetered node on the top of the queue
 - take *fail* node of the current node and while there is no *goto* way on the *fail* node take one more backward *fail* node (of the *fail* node)
 - set the fail on the current node as goto of the finally found fail node and the current symbol
 - add to *output* of the current node *output* of the newly found *fail* on the current node

search steps:

- start in the initial node
- read the searched string charcter by character
- while (if) is no output of *goto* on a current node and the read character
 - set the new node as fail result on the current node
- pass through the goto function
 - it is always defined on the initial node
 - at least as a stand by
- write output if is something to write

Algorithm complexity

- linear complexity O(m + n)
 - m size of the searched (target) string
 - n total size of the set of the searched for strings
- automaton creation
 - trie construction simply linear
 - queue cycle:
 - linear in number of nodes
 - fail construction reuses fail on previous nodes thus it goes fast backward
- automaton search
 - total amount of *fail* transitions is bounded by the total amount of (matched) goto transitions
 - total amount of *goto* transitions is bounded by the length of the searched string

白人不同人不良人不良人。 臣

Automaton example

- dashed arrows for the relevant part of the fail function
- the output on the node of position of 'biologic' is 'logic'

usage of Aho-Corasick algorithm for more complex situations

- wild card matching with bounded amount of the wild cards
 - search for non wild card parts
 - checks for appropriate distances between occurences
- limited amount of mismatches on any position
 - enlarging the set of the strings searched for according to the possible mismatches

Gene prediction

howto find unknown genes inside sequences

genomes do not contain explicit information on gene locations

- human genome: cca 30 thousand genes
- search for putative genes
 - ORF open reading frame can be translated
- gene finding
 - de novo according to gene characteristics
 - search for transcribed genes
 - comparisons with usage of known genes
- gene markers
 - for gene expression purposes
 - promoters, transcription factors binnding sites, etc.
 - cells themselves have to find genes somehow

Prokaryotic gene markers

transcription

- promoter sequences
 - Pribnow box (-10 location) T(77%) A(76%) T(60%) A(61%) A(56%) T(82%)
 - TTGACA sequence (-35, 17 nt off the Pribnow box)
 T(69%) T(79%) G(61%) A(56%) C(54%) A(54%)
 - other specific (SOS box, etc.) promoters
- systematics of transcription factor binding sites
- termination harpin loops palindromes

translation

- Shine-Dalgarno sequence AGGAGG
 - upstream of the first coding AUG

日本 (國本 (国本 (国本))) 国

Eukaryotic gene markers

transcription

- (methylation) CpG islands
- cis regulatory elements
 - TATA box, is not necessary

mRNA maturation

- polyadenylation (AAUAAA sequence)
- splicing marks
 - donor site 5' of an intron, acceptor site 3' of an intron
 - intron: GU (donor site) AG (acceptor site)
 - for vast most of introns
 - intron: branch site (20-50 bp upstream of acceptor site) CU(A/G)A(C/U)
 - the middle A is conserved
 - exons: (A/C)AG (donor site), G (acceptor site)
 - cca 60% of exon/intron borders

translation

- Kozak consensus sequence (A/G)CCACC
 - upstream (-1 to -15) of the first coding AUG

ロンス値とスタンスタントは

Gene cotents

- triplet frequences
 - biased triplet frequenes inside genes
- tri-nucleotide auto-correlations
 - slight 3-repetition signal inside genes
- stop-codons
 - outside genes 3 of 64 triplets should be a stop codon every cca 60-75 bp inframe
- entropy measure
 - GC content and conditional probabilities biased for gene rich/poor sites for specific species

・ 同 ト ・ ヨ ト ・ ヨ ト …

HMM search

- combination of the known signals and content probabilities
- probabilities of inside-a-gene along a given sequence
 - selectoin of regions with high (smoothened) in-gene probabilities, usage of hierarchized HMMs
- Prokaryotes
 - known systematics on (strong) signals
 - works fairly well
- Eukaryotes
 - weak, various, poorly known signals
 - mediocre results

ロトス値とスヨとスヨと

every species similar to every species

- to search sequences related to known genes
 - many organisms have (partially) sequenced genomes
 - approximate search of various gene sequences
- comparative genomics
 - successful for yeast species
 - under hard work for the human genome

Protein and mRNA based approaches

- mRNA detection
 - relatively simple task polyA tails detection
- ESTs, cDNA libraries
 - many mRNAs reversely transcribed into cDNAs
- protein sequences
 - genetic code usage for coding sequences prediction

not only protein codin genes

- repetitions and ncRNA search
- Iong time known RNAs: rRNA, tRNA
- non-coding RNAs with substantial regulatory functions
- structural RNA motifs
 - UNCG and GNRA tetraloops, uridine turns, CTAG tetramers
- some repetitive sequences probably functional too

Binding sites

- regulatory motifs (cca 4-10 bp)
 - usually in near upstream sequences
 - sometimes in near downstream sequences
 - many in far upstream sequences
- regulatory canonical sequence search
 - a short sequence present in most given sequences
 - the least total amount of mismatches on a subset
- median string search
 - rename ATGC into 0123 numbers
 - a table of all the 8-mers is about 1 MB large
 - an improvement of the search
 - stop a local comparison if initial (terminal) part too distant

ロトス値とスピアメモト

Items to remember

Nota bene:

gene structure, marker types

- Sequence localization
 - STS, EST
 - Aho-Corasick algorithm
- Gene sequencing
 - Overlap-Layout-Consensus
 - Euler, Hamilton paths