Bioinformatics

Computer science: graphs, HMMs

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.6

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org

Bioinformatics - Computer science

ヘロト ヘアト ヘビト ヘビト

ъ

Computer science basics

From mathematical logic to complexity theories to software.

- data and algorithms work, roots in pure mathematics
- applications practical data stores and computation systems

Distinctions

- mathematical background
 - theories of data and computations
 - logic and recursion, Turing machines, calculi
- data and algorithms
 - data structures and algorithm development
 - complexity descriptions and charcterizations
- programming, computations
 - imperative (common) vs. declarative programming
 - functional, logic, constraint technics, templates

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Logic

exact systems and their descriptions

theories metatheories

- propositional calculus 'outer'
 - pseudoparadoxes: "this sentence is false"
- predicate (first order) calculus 'inner'
 - quantifiers: axioms vs. deduction rules
- symbols, terms, formulae
- axioms, deduction rules, proofs
- theorems provability, models truth
- recursion and computions, relation systems

Recursion

From the beginning to the end.

self-similarity

- function calls on reduced data sets
- efficient for tail recursion
- inductive computing
 - to keep up an invariant still valid
 - to go through, approaching a target
- example: square-2 covering
 - invariant: #black = #white 2
 - decreasing the amount of free cells
- Iimitations
 - halting problem

Probability

stochastic systems: probability, degree, uncertainty

- probability space (Ω, F, P)
 - Ω sample space of possible events
 - \mathcal{F} σ -algebra: complements and countable unions
 - P probability measure
 - random variables measurable functions
- density / mass functions
 - uniform: 1/(b − a), 1/n
 - memoryless (exponential, geometric): $\lambda e^{-\lambda x}$, $(1 p)^{n-1}p$
 - normal: $1/(\sigma\sqrt{2\pi}) \cdot \exp[-(x-\mu)^2/(2\sigma^2)]$
 - homoschedastic variables \rightarrow normal distribution

くロト (過) (目) (日)

Conditional probability

Probabilities under some prior knowledge

- e.g. probabilities of symbols on a string on position n when symbols on positions n − k, ..., n − 1 are known
- $\Pr(A|B) = \Pr(A \cap B) / \Pr(B)$
 - take the part of universe where *B* is valid as the new whole universe and compute the probability of *A* therein
 - Pr(A|B) = Pr(A) iff A and B are independent random events

Bayes' theorem

• $\Pr(A_1|B) = \Pr(B|A_1) \cdot \Pr(A_1) / \sum_i [\Pr(B|A_i) \cdot \Pr(A_i)]$ • $\Pr(A|B) \Pr(B) = \Pr(A \cap B) = \Pr(B|A) \Pr(A)$

ヘロト ヘ戸ト ヘヨト ヘヨト

Statistics

explorative vs. confirmative statistics

- explorations: system characterizations
 - mean, median, variance, correlation, etc.
 - data-mining, search for interavariable relations
- confirmations: hypothesis testing
 - p-value probability of wrong rejecting the null hypothesis
 - normal distribution of errors
 - parametric tests: based on means and variances
 - continuous distributions
 - (robust) non-parametric tests: based on quantiles
- multivariate tests
 - elimination of the growing probability of wrong H₀ rejecting
 - resempling: bootstrap, permutation tests
 - Bonferroni corrections

・ロト ・ 理 ト ・ ヨ ト ・

Theory of Information

complexities of structural descriptions

- Shannon entropy: $H = -k \sum_{1}^{n} p_i \log p_i$
 - the least amount of bits for an encoding
 - axioms:
 - defined and continuous
 - growing in variables of the discrete uniform distribution
 - branching into subsystems
- Fisher information: $I(\theta) = -\int \frac{\partial^2}{\partial \theta^2} \ln f(X; \theta) df(X; \theta)$
 - definition: the variance of the score
 - suitability of an observable with respect to an unobservable
- Kolmogorov complexity
 - definition: the shortest specification of an object
 - Berry pseudoparadox:
 - "the smallest positive integer not definable in 11 words"

► < Ξ >

Complexity

computational complexity

- asymptotic notation:
 - $f(n) \in O(g(n))$... upper bound
 - $\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$
 - $f(n) \in \Theta(g(n))$... tight bound
 - $0 < \liminf_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| \le \limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$
- Computation resources
 - time complexity
 - space complexity
- Complexity classes
 - polynomial: linear, loglinear, quadratic, ...
 - NP i.e. 'non-deterministic polynomial'
 - other: probabilistic, exponential, etc.

Graphs

- G = (V, E)
 - V vertices, E edges between the vertices
 - connected, un/directed graphs, weighted graphs
 - degrees of vertices of a graph
- *n* × *n* matrices
 - adjacency matrix *a_{ij}* count of edges between *i*, *j*
 - degree matrix non-zeros on diagonal: degree of a_{ii}
 - Laplacian matrix $I_{ij} = d_{ij} a_{ij}$
- basic notions
 - (simple) path a sequence of adjoint vertices
 - cycle a closed path
 - tree a graph without a cycle
 - spanning tree with all the vertices
- Euler paths
 - to meet all the edges without an edge repeat
 - iff: all (-2) the vertices with even degrees

Algorithms

standard graph algorithms

traversal

- a simple pass through a graph: DFS, BFS
- minimum spanning trees
 - Borůvka's, Jarník's/Prim's, Kruskal's
- shortest paths
 - Dijkstra's, Bellman-Ford, Floyd-Warshall algorithm
- network flows
 - Ford-Fulkerson, MPM, Goldberg
- sort
 - topological, scheduling

・ 同 ト ・ ヨ ト ・ ヨ ト …

Traversal

- BFS breadth-first search
 - usage of a FIFO queue
 - start: put a (root) vertex into the queue
 - next: repeat until the queue is empty
 - take the first vertex from the queue
 - put all its (free) adjecent vertices into the queue
- DFS depth-first search
 - usage of a LIFO stack
 - start: put a (root) vertex into the stack
 - next: repeat prolong / backtrack
 - push first available adjacent vertices into the stack
 - remove vertices when there's no (free) prolongation
- complexity
 - time: |V| + |E| for both
 - space: DFS more efficient than BFS
 - DFS usually better for heuristics

프 🖌 🛪 프 🛌

Components

graph structure

- connected components
- biconnected components
 - without a separation vertex, iff all edge pairs in a cycle
- strongly connected components
 - connected (\leftrightarrow) components of a directed graph
- connected components
 - just traversals of a graph until met all the vertices
- biconnected components of graph G
 - DFS on the graph $G \to proxy \ graph \ F$
 - vertices of F are edges of G
 - connected components of F are the biconnected ones of G
- strong components
 - subsequent DFS on the reverted graph (G^R)
 - DFS on G from its sink vertex a source vertex of G^R
 - result is a DAG of strongly connected components of G

Shortest paths

- all vertices: Floyd-Warshall algorithm
 - use of adjacency matrix, without negative cycles
 - time complexity is $\Theta(|V|^3)$
 - search the shortest paths through limited sets of other verteces
 - consequently compare distances through the newly added vertices
- single-source: Dijkstra's algorithm
 - for positive weights, complexity $O(|E| + |V| \log |V|)$
 - set all the verteces as open
 - set infinite distance for all but the source vertex
 - start with the source vertex, set its distance to 0
 - repeat:
 - take the open vertex with least distance
 - check distances of paths to verteces from the taken vertex
 - set the taken vertex closed
- the algorithms make use of separation of the problems onto smaller data subsets

Dynamic programming

Divide et Conquer

Fermat's principle

- the optical path is the extremal one
- subpaths are extremal too \rightarrow accessible to decompositions

shortest path

- subsequently optimal solutions up to limited data sets
- the 'divide' part is linear, i.e. the recursion easily iterated

common scheme

- forward search for optimal sub-solutions
- backward reconstruction of the final solution

Recursion examples

recursion iteratization

- tail recursion \rightarrow simple iteratization
 - Dijkstra's algorithm
- complex recursion schemes hard to iteratize
 - median search
- median search linear time
 - medians of n-tuple subsets
 - recursively medain of the n-tuple medians
 - the current median based separation of the current set
 - recursively search in the selected subset
- remeber: many concrete recursion algorithms lack efficacy

Markov systems

the future depends on the past through the present

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_0 = x_0) = \Pr(X_{n+1} = x | X_n = x_n)$$

i.e. future and past states are conditionally independent

- possible domain separations
- physics time, valid
- other approximations
- generalizations
 - N-th order Markov process relevant last N timestamps
 - parametrization: time, sequences, etc.

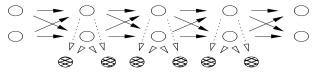
・ 回 ト ・ ヨ ト ・ ヨ ト

Hidden systems derivation

deterministic system (visible states)

stochastic system (visible states, probabilities)

stochastic hidden process (states, probabilities, outputs)



hidden inner states - known outer manifestations

static - an examination:

- inner: understanding a topic
- outer: answers on questions

dynamic - an islamist behavior:

- inner: being offended current day
- outer: some (number of) burned flags
- a case: 'flames'-'flames'-'flames'-'nothing'-'flames'
 - for a high transition probability of 'offended' → 'offended', it should be rather probable 'being offended' all the time (e.g. just out of flags for the one day)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

HMMs on biopolymers

- detection of a protein domain
 - inner: inside / outside of the domain motif
 - outer: actual aminoacyls
- sequence profile matching
 - inner: insert / delete / match to a position of the profile
 - outer: actual aminoacyls
- search for gene sequences inside genomes
 - inside / outside of a gene
 - actual nucleotides

The inner states can be / need not be parametrized. like 'being offended' vs. 'being offended in a given day'

프 🖌 🔺 프 🛌

HMMs themselves

Finite automaton extension

- finite automaton
 - states, transition function
- FA inner states
 - structural states lesser amount of states
 - \circlearrowright outside a gene \leftrightarrow inside a gene \circlearrowright
 - linearized states greater amount of states
 - \rightarrow states for position $n \rightarrow$ states for position $n + 1 \rightarrow$
- linear passing through the inner states
 - conditional independence parametrization: time, sequence
- linear outer sequences of visible events
 - stochastic regular grammars

HMMs usage

three types of problems:

- most probable path for a HMM, sequence pair given
 - one concrete derivation path
 - sequence alignment
- probability of a given output sequence on a HMM
 - overall probability of a sequence
 - odomain detection
- motif HMM parameter profiling for a sequence set
 - iterative parameter adjusting
 - HMM training

ヘロト ヘアト ヘビト ヘビト

paths processing:

- assumption of Markovian processes
 - $\bullet \ \rightarrow \text{dynamic programming}$
 - tail recursion, simple linear iteration
- passing through the HMM states
 - computing maximal or overall probabilities along the steps
 - maximal derivation: Viterbi algorithm
 - overall derivation: forward algorithm
- the forward algorithm used as a part of HMM profiling

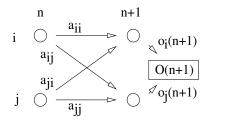
HMM algorithms step

stepwise probability products

• invariant assumption on each (relevant) inner state:

- maximal / overall probabilities for inner states are set
- take next observable object
 - for each currently accessed inner state
 - multiply its probability for each accessible state with the transition probability times the output probability
 - for each recently accessed inner state
 - sum the new probabilities (forward algorithm)
 - choose the greatest new probability (Viterbi algorithm)

HMM probabilities



i, *j* inner states

n

- outer string postions
- $O(\cdot)$ outer string symbols
- a.. transition probabilities
- $o_{\cdot}(\cdot)$ output probabilities

- auxiliar probabilities (under a given HMM)
 - $\operatorname{Pr}_{ii}(n+1) = \operatorname{Pr}_i(n) \cdot a_{ii} \cdot o_i(n+1)$
 - $\operatorname{Pr}_{ij}(n+1) = \operatorname{Pr}_{j}(n) \cdot a_{ji} \cdot o_{i}(n+1)$
- most probable derivation (profile HMMs)
 - $Pr_i(n+1) = max(Pr_{ii}(n+1), Pr_{ij}(n+1))$
- overall derivations (domain HMMs)

•
$$\Pr_i(n+1) = \Pr_{ii}(n+1) + \Pr_{ij}(n+1)$$

Path algorithms for HMMs

easy to understand algorithms

- start with all (initial) inner states
 - initial states for parametrized FA
- set either initial or initial × output probabilities to the states
 - initial probabilities for special 'quiet' initial states
- complexity: $|\text{inner states}|^2 \times \text{string length}$
 - inner states for a single step in the case of linearized states

update sequentially inner states:

- Viterbi algorithm
 - compute new maximal probabilities
- Forward algorithm
 - compute new overall probabilities

Search results

- each sequence has a derivation probability, which ones are those with a found domain?
- statistics on NLL scores
 - NLL = log(Pr(overall))
 - rather low probabilities \rightarrow better to compute with log
 - log values roughly under normal distribution, with outliers
 - Z-scores, i.e. distances in units of standard deviations
 - smoothened deviations for sequences of similar lengths
- iterative outlier search
 - compute smoothened standard deviations
 - take out sequences with high (e.g. > 4) Z-scores
 - all the outliers are taken as with successful search

HMMs reestimations

- start of adjusting the transition probabilities
 - under a given sequence and running HMM parameters
 - forward probabilities computation:
 - α_i(n) = Pr(O(1,...,n), inner(n) = i|HMM) probability of being in the state *i* in the step n and with outputing the initial part of the string
 - backward probabilities computation:
 - β_i(n) = Pr(O(n + 1, ..., N)|inner(n) = i, HMM) probability of outputing the terminal part of the string, starting from the state *i* in the *n*-th step
- normalization for reading n + 1-th outer symbol

it has to pass from a state i into a state j

•
$$\zeta_{i,j}(n) = \alpha_i(n) \cdot \mathbf{a}_{ij} \cdot \mathbf{o}_j(n+1) \cdot \beta_j(n+1)$$

•
$$\xi_{i,j}(n) = \zeta_{i,j}(n) / \sum_i \sum_j \zeta_{i,j}(n)$$

• overall expected number of transitions *i* to *j*:

$$\xi_{i,j} = \sum_{n} \xi_{i,j}(n)$$

to be continued

HMMs profiling

EM - expectation maximization

- start with apriori probability parameters
- subsequently use all the relevant output strings
 - stop the adjusting when small changes
- iterate the parameters adjusting
 - compute overall expected numbers of transitions and analogically symbol outputs from particular inner states
 - normalize to have total unite probabilites:

$$Pr(i,j) = \xi_{i,j} / \sum_{j} \xi_{i,j}$$

$$Pr(s|i) = o_i(s) / \sum_{s} o_i(s)$$

- for *i*, *j* inner states, *s* possible output symbols
- just rate probabilities of having the-vs.-any symbol outputs
- the new probabilities serve as the new parameters
 - backward only probabilities usage for linearized HMMs

→ < Ξ →</p>

optimization class of algorithms

- Iocal optimum
- $\bullet \rightarrow$ to use a system of profilings
 - probabilistic climbing methods: simulated annealing, etc.
- overfitting
- $\bullet \ \rightarrow$ to add noise and/or apriori knowledge
 - regularization to avoid biases of small training set cases

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

HMMs limitations

when to use something more profound / complex

- protein profiles relatively sufficient
- gene finding relatively sufficient
- RNA folding highly insufficient
 - long-distance interactions
- MCMC and hierarchical HMMs
 - for protein domain characterizations
- Bayesian networks
 - for complex system development
- Stochastic context-free grammars and Covariance models
 - for RNA matching and folding predictions

Nota bene:

graphs, dynamic programming

- HMMs
 - definition
 - examples
- Algorithms
 - paths
 - limitations

・ 同 ト ・ ヨ ト ・ ヨ ト …

3