
Bioinformatics - Lecture 02

Bioinformatics

Computer science: graphs, HMMs

Martin Saturka

http://www.bioplexity.org/lectures/

EBI version 0.6

Creative Commons Attribution-Share Alike 2.5 License

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Computer science basics

From mathematical logic to complexity theories to software.
data and algorithms work, roots in pure mathematics
applications practical data stores and computation systems

Distinctions

mathematical background
- theories of data and computations
- logic and recursion, Turing machines, calculi

data and algorithms
- data structures and algorithm development
- complexity descriptions and charcterizations

programming, computations
- imperative (common) vs. declarative programming
- functional, logic, constraint technics, templates

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Logic

exact systems and their descriptions

theories metatheories

propositional calculus - ’outer’
pseudoparadoxes: ”this sentence is false”

predicate (first order) calculus - ’inner’
quantifiers: axioms vs. deduction rules

symbols, terms, formulae

axioms, deduction rules, proofs

theorems - provability, models - truth

recursion and compuations, relation systems

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Recursion

From the beginning to the end.

self-similarity
function calls on reduced data sets
efficient for tail recursion

inductive computing
to keep up an invariant - still valid
to go through, approaching a target

example: square-2 covering
invariant: #black = #white - 2
decreasing the amount of free cells

limitations
halting problem

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Probability

stochastic systems: probability, degree, uncertainty

probability space (Ω,F , P)

Ω - sample space of possible events
F - σ-algebra: complements and countable unions
P - probability measure
random variables - measurable functions

density / mass functions
uniform: 1/(b − a), 1/n
memoryless (exponential, geometric): λe−λx , (1− p)n−1p
normal: 1/(σ

√
2π) · exp[−(x − µ)2/(2σ2)]

homoschedastic variables → normal distribution

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Conditional probability

Probabilities under some prior knowledge

e.g. probabilities of symbols on a string on position n
when symbols on positions n − k , ..., n − 1 are known

Pr(A|B) = Pr(A ∩ B)/ Pr(B)

take the part of universe where B is valid as the new whole
universe and compute the probability of A therein

Pr(A|B) = Pr(A) iff A and B are independent random events

Bayes’ theorem
Pr(A1|B) = Pr(B|A1) · Pr(A1) / Σi [Pr(B|Ai) · Pr(Ai)]

Pr(A|B) Pr(B) = Pr(A ∩ B) = Pr(B|A) Pr(A)

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Statistics

explorative vs. confirmative statistics

explorations: system characterizations
mean, median, variance, correlation, etc.
data-mining, search for interavariable relations

confirmations: hypothesis testing
p-value - probability of wrong rejecting the null hypothesis
normal distribution of errors

parametric tests: based on means and variances
continuous distributions

(robust) non-parametric tests: based on quantiles

multivariate tests
elimination of the growing probability of wrong H0 rejecting
resempling: bootstrap, permutation tests
Bonferroni corrections

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Theory of Information

complexities of structural descriptions

Shannon entropy: H = −k
∑n

1 pi log pi

the least amount of bits for an encoding
axioms:

defined and continuous
growing in variables of the discrete uniform distribution
branching into subsystems

Fisher information: I(θ) = −
∫

∂2

∂θ2 ln f (X ; θ) df (X ; θ)

definition: the variance of the score
suitability of an observable with respect to an unobservable

Kolmogorov complexity
definition: the shortest specification of an object
Berry pseudoparadox:

”the smallest positive integer not definable in 11 words”

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Complexity

computational complexity

asymptotic notation:
f (n) ∈ O(g(n)) ... upper bound

lim supn→∞

˛̨̨
f (n)
g(n)

˛̨̨
< ∞

f (n) ∈ Θ(g(n)) ... tight bound

0 < lim infn→∞
˛̨̨

f (n)
g(n)

˛̨̨
≤ lim supn→∞

˛̨̨
f (n)
g(n)

˛̨̨
< ∞

Computation resources
time complexity
space complexity

Complexity classes
polynomial: linear, loglinear, quadratic, ...
NP i.e. ’non-deterministic polynomial’
other: probabilistic, exponential, etc.

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Graphs

G = (V , E)
V vertices, E edges between the vertices
connected, un/directed graphs, weighted graphs
degrees of vertices of a graph

n × n matrices
adjacency matrix - aij count of edges between i , j
degree matrix - non-zeros on diagonal: degree of aii

Laplacian matrix lij = dij − aij

basic notions
(simple) path - a sequence of adjoint vertices
cycle - a closed path
tree - a graph without a cycle
spanning tree - with all the vertices

Euler paths
to meet all the edges without an edge repeat
iff: all (-2) the vertices with even degrees

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Algorithms

standard graph algorithms

traversal
a simple pass through a graph: DFS, BFS

minimum spanning trees
Borůvka’s, Jarnı́k’s/Prim’s, Kruskal’s

shortest paths
Dijkstra’s, Bellman-Ford, Floyd-Warshall algorithm

network flows
Ford-Fulkerson, MPM, Goldberg

sort
topological, scheduling

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Traversal

BFS - breadth-first search
usage of a FIFO queue
start: put a (root) vertex into the queue
next: repeat until the queue is empty

take the first vertex from the queue
put all its (free) adjecent vertices into the queue

DFS - depth-first search
usage of a LIFO stack
start: put a (root) vertex into the stack
next: repeat prolong / backtrack

push first available adjacent vertices into the stack
remove vertices when there’s no (free) prolongation

complexity
time: |V |+ |E | for both
space: DFS more efficient than BFS
DFS usually better for heuristics

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Components

graph structure
connected components
biconnected components

without a separation vertex, iff all edge pairs in a cycle
strongly connected components

connected (↔) components of a directed graph

connected components
just traversals of a graph until met all the vertices

biconnected components of graph G
DFS on the graph G → proxy graph F

vertices of F are edges of G
connected components of F are the biconnected ones of G

strong components
subsequent DFS on the reverted graph (GR)
DFS on G from its sink vertex - a source vertex of GR

result is a DAG of strongly connected components of G

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Shortest paths

all vertices: Floyd-Warshall algorithm
use of adjacency matrix, without negative cycles
time complexity is Θ(|V |3)
search the shortest paths through limited sets of other
verteces
consequently compare distances through the newly added
vertices

single-source: Dijkstra’s algorithm
for positive weights, complexity O(|E |+ |V |log|V |)
set all the verteces as open
set infinite distance for all but the source vertex
start with the source vertex, set its distance to 0
repeat:

take the open vertex with least distance
check distances of paths to verteces from the taken vertex
set the taken vertex closed

the algorithms make use of separation of the problems
onto smaller data subsets

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Dynamic programming

Divide et Conquer

Fermat’s principle
the optical path is the extremal one
subpaths are extremal too → accessible to decompositions

shortest path
subsequently optimal solutions up to limited data sets
the ’divide’ part is linear, i.e. the recursion easily iterated

common scheme
forward search for optimal sub-solutions
backward reconstruction of the final solution

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Recursion examples

recursion iteratization

tail recursion → simple iteratization
Dijkstra’s algorithm

complex recursion schemes hard to iteratize
median search

median search - linear time
medians of n-tuple subsets
recursively medain of the n-tuple medians
the current median based separation of the current set
recursively search in the selected subset

remeber: many concrete recursion algorithms lack efficacy

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Markov systems

the future depends on the past through the present

Pr(Xn+1 = x |Xn = xn, . . . , X0 = x0) = Pr(Xn+1 = x |Xn = xn)

i.e. future and past states are conditionally independent
possible domain separations
physics - time, valid
other - approximations

generalizations
N-th order Markov process - relevant last N timestamps
parametrization: time, sequences, etc.

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Hidden systems derivation

deterministic system (visible states)

stochastic system (visible states, probabilities)

stochastic hidden process (states, probabilities, outputs)

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Simple examples

hidden inner states - known outer manifestations

static - an examination:

inner: understanding a topic

outer: answers on questions

dynamic - an islamist behavior:

inner: being offended current day

outer: some (number of) burned flags
a case: ’flames’-’flames’-’flames’-’nothing’-’flames’

for a high transition probability of ’offended’ → ’offended’,
it should be rather probable ’being offended’ all the time
(e.g. just out of flags for the one day)

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs on biopolymers

detection of a protein domain
inner: inside / outside of the domain motif
outer: actual aminoacyls

sequence profile matching
inner: insert / delete / match to a position of the profile
outer: actual aminoacyls

search for gene sequences inside genomes
inside / outside of a gene
actual nucleotides

The inner states can be / need not be parametrized.
like ’being offended’ vs. ’being offended in a given day’

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs themselves

Finite automaton extension

finite automaton
states, transition function

FA inner states
structural states - lesser amount of states

� outside a gene ↔ inside a gene 	
linearized states - greater amount of states

→ states for position n → states for position n + 1 →

linear passing through the inner states
conditional independence parametrization: time, sequence

linear outer sequences of visible events
stochastic regular grammars

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs usage

three types of problems:

most probable path for a HMM, sequence pair given
one concrete derivation path
sequence alignment

probability of a given output sequence on a HMM
overall probability of a sequence
domain detection

motif HMM parameter profiling for a sequence set
iterative parameter adjusting
HMM training

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMM algorithms outline

paths processing:

assumption of Markovian processes
→ dynamic programming
tail recursion, simple linear iteration

passing through the HMM states
computing maximal or overall probabilities along the steps
maximal derivation: Viterbi algorithm
overall derivation: forward algorithm

the forward algorithm used as a part of HMM profiling

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMM algorithms step

stepwise probability products

invariant assumption on each (relevant) inner state:
maximal / overall probabilities for inner states are set

take next observable object
for each currently accessed inner state

multiply its probability for each accessible state
with the transition probability times the output probability

for each recently accessed inner state
sum the new probabilities (forward algorithm)
choose the greatest new probability (Viterbi algorithm)

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMM probabilities

aii

n n+1

i

j
a

a

jj

aji

ij
i

j

o (n+1)

o (n+1)

O(n+1)

i , j inner states
n outer string postions

O(·) outer string symbols
a·· transition probabilities

o·(·) output probabilities

auxiliar probabilities (under a given HMM)
Prii(n + 1) = Pri(n) · aii · oi(n + 1)
Prij(n + 1) = Prj(n) · aji · oi(n + 1)

most probable derivation (profile HMMs)
Pri(n + 1) = max(Prii(n + 1), Prij(n + 1))

overall derivations (domain HMMs)
Pri(n + 1) = Prii(n + 1) + Prij(n + 1)

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Path algorithms for HMMs

easy to understand algorithms

start with all (initial) inner states
initial states for parametrized FA

set either initial or initial × output probabilities to the states
initial probabilities for special ’quiet’ initial states

complexity: |inner states|2 × string length
inner states for a single step in the case of linearized states

update sequentially inner states:

Viterbi algorithm
compute new maximal probabilities

Forward algorithm
compute new overall probabilities

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Search results

each sequence has a derivation probability,
which ones are those with a found domain?

statistics on NLL scores
NLL = − log(Pr(overall))
rather low probabilities → better to compute with log
log values roughly under normal distribution, with outliers
Z-scores, i.e. distances in units of standard deviations
smoothened deviations for sequences of similar lengths

iterative outlier search
compute smoothened standard deviations
take out sequences with high (e.g. > 4) Z-scores
all the outliers are taken as with successful search

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs reestimations

start of adjusting the transition probabilities
under a given sequence and running HMM parameters
forward probabilities computation:

αi(n) = Pr(O(1, ..., n), inner(n) = i |HMM)
probability of being in the state i in the step n
and with outputing the initial part of the string

backward probabilities computation:
βi(n) = Pr(O(n + 1, ..., N)|inner(n) = i , HMM)
probability of outputing the terminal part of the string,
starting from the state i in the n-th step

normalization for reading n + 1-th outer symbol
it has to pass from a state i into a state j

ζi,j(n) = αi(n) · aij · oj(n + 1) · βj(n + 1)
ξi,j(n) = ζi,j(n)/

∑
i
∑

j ζi,j(n)

overall expected number of transitions i to j :
ξi,j =

∑
n ξi,j(n)

to be continued

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs profiling

EM - expectation maximization

start with apriori probability parameters
subsequently use all the relevant output strings

stop the adjusting when small changes

iterate the parameters adjusting
compute overall expected numbers of transitions and
analogically symbol outputs from particular inner states
normalize to have total unite probabilites:
Pr(i , j) = ξi,j/

∑
j ξi,j

Pr(s|i) = oi(s)/
∑

s oi(s)

for i , j inner states, s possible output symbols
just rate probabilities of having the-vs.-any symbol outputs

the new probabilities serve as the new parameters
backward only probabilities usage for linearized HMMs

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Profiling problems

optimization class of algorithms

local optimum
→ to use a system of profilings

probabilistic climbing methods: simulated annealing, etc.

overfitting
→ to add noise and/or apriori knowledge

regularization to avoid biases of small training set cases

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



HMMs limitations

when to use something more profound / complex

protein profiles - relatively sufficient

gene finding - relatively sufficient
RNA folding - highly insufficient

long-distance interactions

MCMC and hierarchical HMMs
for protein domain characterizations

Bayesian networks
for complex system development

Stochastic context-free grammars
and Covariance models

for RNA matching and folding predictions

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science



Items to remember

Nota bene:

graphs, dynamic programming

HMMs
definition
examples

Algorithms
paths
limitations

Martin Saturka www.Bioplexity.org Bioinformatics - Computer science


